ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of Antenna Surface for a Millimeter-Wave Space Radio Telescope II; Metal Mesh Surface for Large Deployable Reflector

40   0   0.0 ( 0 )
 نشر من قبل Kazuhisa Kamegai
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degradation of the system noise temperature. In addition, we carried out an astronomical observation of a well-known SiO maser source, R Cas, by using a metal mesh mirror on the NRO 45-m radio telescope Coude system. The metal mesh mirror considerably increases the system noise temperature and slightly decreases the peak antenna temperature. These results are consistent with laboratory measurements.

قيم البحث

اقرأ أيضاً

Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) system for the fifth generation (5G) cellular communications can also enable single-anchor positioning and object tracking due to its large bandwidth and inherently high angular resolutio n. In this paper, we introduce the newly invented concept, large intelligent surface (LIS), to mmWave positioning systems, study the theoretical performance bounds (i.e., Cramer-Rao lower bounds) for positioning, and evaluate the impact of the number of LIS elements and the value of phase shifters on the position estimation accuracy compared to the conventional scheme with one direct link and one non-line-of-sight path. It is verified that better performance can be achieved with a LIS from the theoretical analyses and numerical study.
142 - Qian Ye , Boyang Wang , Qiang Yao 2021
This paper presents a new method to obtain the deformation distribution on the main reflector of an antenna only by measuring the electric intensity on a spherical surface with the focal point as the center of the sphere, regardless of phase. Combini ng the differential geometry theory with geometric optics method, this paper has derived a deformation-intensity equation to relate the surface deformation to the intensity distribution of a spherical near-field directly. Based on the Finite difference method (FDM) and Gauss-Seidel iteration, deformation has been calculated from intensity simulated by GO and PO method, respectively, with relatively small errors, which prove the effectiveness of the equation proposed in this paper. By means of this method , it is possible to measure the deformation only by scanning the electric intensity of a single hemispherical near-field whose area is only about $1/15$ of the aperture. And the measurement only needs a plane wave at any frequency as the incident wave, which means that both the signals from the outer space satellite and the far-field artificial beacon could be used as the sources. The scanning can be realized no matter what attitude and elevation angle the antenna is in because the size and angle of the hemisphere are changeable.
96 - Rui Sun , Weidong Wang , Li Chen 2021
Millimeter-wave (mmWave) communication systems rely on large-scale antenna arrays to combat large path-loss at mmWave band. Due to hardware characteristics and deployment environments, mmWave large-scale antenna systems are vulnerable to antenna elem ent blockages and failures, which necessitate diagnostic techniques to locate faulty antenna elements for calibration purposes. Current diagnostic techniques require full or partial knowledge of channel state information (CSI), which can be challenging to acquire in the presence of antenna failures. In this letter, we propose a blind diagnostic technique to identify faulty antenna elements in mmWave large-scale antenna systems, which does not require any CSI knowledge. By jointly exploiting the sparsity of mmWave channel and failure pattern, we first formulate the diagnosis problem as a joint sparse recovery problem. Then, the atomic norm is introduced to induce the sparsity of mmWave channel over continuous Fourier dictionary. An efficient algorithm based on alternating direction method of multipliers (ADMM) is proposed to solve the formulated problem. Finally, the performance of the proposed technique is evaluated through numerical simulations.
Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation insi de the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the $sim-30$ dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor $>$10. With the on-chip stray light absorber the point source response is close to simulations down to the $sim-35$ dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.
As deformations of the main reflector of a radio telescope directly affect the observations, the evaluation of the deformation is extremely important. Dynamic characteristics of the main reflector of the Nobeyama 45 m radio telescope, Japan, are meas ured under two conditions: The first is when the pointing observation is in operation, and the second is when the reflector is stationary and is subjected to wind loads when the observation is out of operation. Dynamic characteristics of the main reflector are measured using piezoelectric accelerometers. When the telescope is in operation, a vibration mode with one nodal line horizontally or vertically on the reflector is induced, depending on whether the reflector is moving in the azimuthal or elevational planes, whereas under windy conditions, vibration modes that have two to four nodal lines are simultaneously induced. The predominant mode is dependent on the direction of wind loads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا