ﻻ يوجد ملخص باللغة العربية
Mass and radius measurements of stars are important inputs for models of stellar structure. Binary stars are of particular interest in this regard, because astrometry and spectroscopy of a binary together provide the masses of both stars as well as the distance to the system, while interferometry can both improve the astrometry and measure the radii of the stars. In this work we simulate parameter recovery from intensity interferometry, especially the challenge of disentangling the radii of two stars from their combined interferometric signal. Two approaches are considered: separation of the visibility contributions of each star with the help of differing brightness ratios at different wavelengths, and direct fitting of the intensity correlation to a multi-parameter model. Full image reconstructions is not attempted. Measurement of angular radii, angular separation and first-order limb-darkening appears readily achievable for bright binary stars with current instrumentation.
The present articlereports on the first spatial intensity interferometry measurements on stars since the observations at Narrabri Observatory by Hanbury Brown et al. in the 1970s. Taking advantage of the progresses in recent years on photon-counting
We report the first intensity correlation measured with star light since Hanbury Brown and Twiss historical experiments. The photon bunching $g^{(2)}(tau, r=0)$, obtained in the photon counting regime, was measured for 3 bright stars, $alpha$ Boo, $a
With the current revival of interest in astronomical intensity interferometry, it is interesting to revisit the associated theory, which was developed in the 1950s and 1960s. This paper argues that intensity interferometry can be understood as an ext
We propose a new approach, based on the Hanbury Brown and Twiss intensity interferometry, to transform a Cherenkov telescope to its equivalent optical telescope. We show that, based on the use of photonics components borrowed from quantum-optical app
Stellar Intensity Interferometry is a technique based on the measurement of the second order spatial correlation of the light emitted from a star. The physical information provided by these measurements is the angular size and structure of the emitti