ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Inductive Link Prediction Using Hyper-Relational Facts

168   0   0.0 ( 0 )
 نشر من قبل Mehdi Ali
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based glspl{kg}, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines. Our code is available at url{https://github.com/mali-git/hyper_relational_ilp}.

قيم البحث

اقرأ أيضاً

Link Prediction, addressing the issue of completing KGs with missing facts, has been broadly studied. However, less light is shed on the ubiquitous hyper-relational KGs. Most existing hyper-relational KG embedding models still tear an n-ary fact into smaller tuples, neglecting the indecomposability of some n-ary facts. While other frameworks work for certain arity facts only or ignore the significance of primary triple. In this paper, we represent an n-ary fact as a whole, simultaneously keeping the integrity of n-ary fact and maintaining the vital role that the primary triple plays. In addition, we generalize hyperbolic Poincare embedding from binary to arbitrary arity data, which has not been studied yet. To tackle the weak expressiveness and high complexity issue, we propose HYPER^2 which is qualified for capturing the interaction between entities within and beyond triple through information aggregation on the tangent space. Extensive experiments demonstrate HYPER^2 achieves superior performance to its translational and deep analogues, improving SOTA by up to 34.5% with relatively few dimensions. Moreover, we study the side effect of literals and we theoretically and experimentally compare the computational complexity of HYPER^2 against several best performing baselines, HYPER^2 is 49-61 times quicker than its counterparts.
132 - Donghan Yu , Yiming Yang 2021
Different from traditional knowledge graphs (KGs) where facts are represented as entity-relation-entity triplets, hyper-relational KGs (HKGs) allow triplets to be associated with additional relation-entity pairs (a.k.a qualifiers) to convey more comp lex information. How to effectively and efficiently model the triplet-qualifier relationship for prediction tasks such as HKG completion is an open challenge for research. This paper proposes to improve the best-performing method in HKG completion, namely STARE, by introducing two novel revisions: (1) Replacing the computation-heavy graph neural network module with light-weight entity/relation embedding processing techniques for efficiency improvement without sacrificing effectiveness; (2) Adding a qualifier-oriented auxiliary training task for boosting the prediction power of our approach on HKG completion. The proposed approach consistently outperforms STARE in our experiments on three benchmark datasets, with significantly improved computational efficiency.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Multi-relational graph is a ubiquitous and important data structure, allowing flexible representation of multiple types of interactions and relations between entities. Similar to other graph-structured data, link prediction is one of the most importa nt tasks on multi-relational graphs and is often used for knowledge completion. When related graphs coexist, it is of great benefit to build a larger graph via integrating the smaller ones. The integration requires predicting hidden relational connections between entities belonged to different graphs (inter-domain link prediction). However, this poses a real challenge to existing methods that are exclusively designed for link prediction between entities of the same graph only (intra-domain link prediction). In this study, we propose a new approach to tackle the inter-domain link prediction problem by softly aligning the entity distributions between different domains with optimal transport and maximum mean discrepancy regularizers. Experiments on real-world datasets show that optimal transport regularizer is beneficial and considerably improves the performance of baseline methods.
Link prediction for knowledge graphs aims to predict missing connections between entities. Prevailing methods are limited to a transductive setting and hard to process unseen entities. The recent proposed subgraph-based models provided alternatives t o predict links from the subgraph structure surrounding a candidate triplet. However, these methods require abundant known facts of training triplets and perform poorly on relationships that only have a few triplets. In this paper, we propose Meta-iKG, a novel subgraph-based meta-learner for few-shot inductive relation reasoning. Meta-iKG utilizes local subgraphs to transfer subgraph-specific information and learn transferable patterns faster via meta gradients. In this way, we find the model can quickly adapt to few-shot relationships using only a handful of known facts with inductive settings. Moreover, we introduce a large-shot relation update procedure to traditional meta-learning to ensure that our model can generalize well both on few-shot and large-shot relations. We evaluate Meta-iKG on inductive benchmarks sampled from NELL and Freebase, and the results show that Meta-iKG outperforms the current state-of-the-art methods both in few-shot scenarios and standard inductive settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا