ﻻ يوجد ملخص باللغة العربية
Different from traditional knowledge graphs (KGs) where facts are represented as entity-relation-entity triplets, hyper-relational KGs (HKGs) allow triplets to be associated with additional relation-entity pairs (a.k.a qualifiers) to convey more complex information. How to effectively and efficiently model the triplet-qualifier relationship for prediction tasks such as HKG completion is an open challenge for research. This paper proposes to improve the best-performing method in HKG completion, namely STARE, by introducing two novel revisions: (1) Replacing the computation-heavy graph neural network module with light-weight entity/relation embedding processing techniques for efficiency improvement without sacrificing effectiveness; (2) Adding a qualifier-oriented auxiliary training task for boosting the prediction power of our approach on HKG completion. The proposed approach consistently outperforms STARE in our experiments on three benchmark datasets, with significantly improved computational efficiency.
For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only
Inferring new facts from existing knowledge graphs (KG) with explainable reasoning processes is a significant problem and has received much attention recently. However, few studies have focused on relation types unseen in the original KG, given only
Knowledge graph (KG) completion aims to fill the missing facts in a KG, where a fact is represented as a triple in the form of $(subject, relation, object)$. Current KG completion models compel two-thirds of a triple provided (e.g., $subject$ and $re
Knowledge graphs link entities through relations to provide a structured representation of real world facts. However, they are often incomplete, because they are based on only a small fraction of all plausible facts. The task of knowledge graph compl