ترغب بنشر مسار تعليمي؟ اضغط هنا

Link Prediction on N-ary Relational Facts: A Graph-based Approach

441   0   0.0 ( 0 )
 نشر من قبل Quan Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

قيم البحث

اقرأ أيضاً

With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usuall y represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These
For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based glspl{kg}, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines. Our code is available at url{https://github.com/mali-git/hyper_relational_ilp}.
Multi-relational graph is a ubiquitous and important data structure, allowing flexible representation of multiple types of interactions and relations between entities. Similar to other graph-structured data, link prediction is one of the most importa nt tasks on multi-relational graphs and is often used for knowledge completion. When related graphs coexist, it is of great benefit to build a larger graph via integrating the smaller ones. The integration requires predicting hidden relational connections between entities belonged to different graphs (inter-domain link prediction). However, this poses a real challenge to existing methods that are exclusively designed for link prediction between entities of the same graph only (intra-domain link prediction). In this study, we propose a new approach to tackle the inter-domain link prediction problem by softly aligning the entity distributions between different domains with optimal transport and maximum mean discrepancy regularizers. Experiments on real-world datasets show that optimal transport regularizer is beneficial and considerably improves the performance of baseline methods.
The incompleteness of Knowledge Graphs (KGs) is a crucial issue affecting the quality of AI-based services. In the scholarly domain, KGs describing research publications typically lack important information, hindering our ability to analyse and predi ct research dynamics. In recent years, link prediction approaches based on Knowledge Graph Embedding models became the first aid for this issue. In this work, we present Trans4E, a novel embedding model that is particularly fit for KGs which include N to M relations with N$gg$M. This is typical for KGs that categorize a large number of entities (e.g., research articles, patents, persons) according to a relatively small set of categories. Trans4E was applied on two large-scale knowledge graphs, the Academia/Industry DynAmics (AIDA) and Microsoft Academic Graph (MAG), for completing the information about Fields of Study (e.g., neural networks, machine learning, artificial intelligence), and affiliation types (e.g., education, company, government), improving the scope and accuracy of the resulting data. We evaluated our approach against alternative solutions on AIDA, MAG, and four other benchmarks (FB15k, FB15k-237, WN18, and WN18RR). Trans4E outperforms the other models when using low embedding dimensions and obtains competitive results in high dimensions.
Tensor, an extension of the vector and matrix to the multi-dimensional case, is a natural way to describe the N-ary relational data. Recently, tensor decomposition methods have been introduced into N-ary relational data and become state-of-the-art on embedding learning. However, the performance of existing tensor decomposition methods is not as good as desired. First, they suffer from the data-sparsity issue since they can only learn from the N-ary relational data with a specific arity, i.e., parts of common N-ary relational data. Besides, they are neither effective nor efficient enough to be trained due to the over-parameterization problem. In this paper, we propose a novel method, i.e., S2S, for effectively and efficiently learning from the N-ary relational data. Specifically, we propose a new tensor decomposition framework, which allows embedding sharing to learn from facts with mixed arity. Since the core tensors may still suffer from the over-parameterization, we propose to reduce parameters by sparsifying the core tensors while retaining their expressive power using neural architecture search (NAS) techniques, which can search for data-dependent architectures. As a result, the proposed S2S not only guarantees to be expressive but also efficiently learns from mixed arity. Finally, empirical results have demonstrated that S2S is efficient to train and achieves state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا