ﻻ يوجد ملخص باللغة العربية
The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic population of neutron stars. In contrast to the bimodal Galactic population detected primarily as radio pulsars, the masses of neutron stars in gravitational-wave binaries are thus far consistent with a uniform distribution, with a greater prevalence of high-mass neutron stars. The maximum mass in the gravitational-wave population agrees with that inferred from the neutron stars in our Galaxy and with expectations from dense matter.
We investigate the ability of current and third-generation gravitational wave (GW) detectors to determine the delay time distribution (DTD) of binary neutron stars (BNS) through a direct measurement of the BNS merger rate as a function of redshift. W
We study evolution of a hierarchical four-body (2+2) system composed by a pair of mass-transferring white dwarf binaries. Applying a simplified model around the synchronous state of two inner orbital periods, we newly find that the four body system c
Coalescing neutron star (NS)-black hole (BH) binaries are promising sources of gravitational-waves (GWs) to be detected within the next few years by current GW observatories. If the NS is tidally disrupted outside the BH innermost stable circular orb
Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgos first gravitational-wave catalog, GWTC-1, we investigate whether the power-law
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency