ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the delay time distribution of binary neutron stars. II. Using the redshift distribution from third-generation gravitational wave detectors network

53   0   0.0 ( 0 )
 نشر من قبل Mohammadtaher Safarzadeh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the ability of current and third-generation gravitational wave (GW) detectors to determine the delay time distribution (DTD) of binary neutron stars (BNS) through a direct measurement of the BNS merger rate as a function of redshift. We assume that the DTD follows a power law distribution with a slope $Gamma$ and a minimum merger time $t_{rm min}$, and also allow the overall BNS formation efficiency per unit stellar mass to vary. By convolving the DTD and mass efficiency with the cosmic star formation history, and then with the GW detector capabilities, we explore two relevant regimes. First, for the current generation of GW detectors, which are only sensitive to the local universe, but can lead to precise redshift determinations via the identification of electromagnetic counterparts and host galaxies, we show that the DTD parameters are strongly degenerate with the unknown mass efficiency and therefore cannot be determined uniquely. Second, for third-generation detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE), which will detect BNS mergers at cosmological distances, but with a redshift uncertainty inherent to GW-only detections ($delta(z)/zapprox 0.1z$), we show that the DTD and mass efficiency can be well-constrained to better than 10% with a year of observations. This long-term approach to determining the DTD through a direct mapping of the BNS merger redshift distribution will be supplemented by more near term studies of the DTD through the properties of BNS merger host galaxies at $zapprox 0$ (Safarzadeh & Berger 2019).



قيم البحث

اقرأ أيضاً

The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic populati on of neutron stars. In contrast to the bimodal Galactic population detected primarily as radio pulsars, the masses of neutron stars in gravitational-wave binaries are thus far consistent with a uniform distribution, with a greater prevalence of high-mass neutron stars. The maximum mass in the gravitational-wave population agrees with that inferred from the neutron stars in our Galaxy and with expectations from dense matter.
We derive the first constraints on the time delay distribution of binary black hole (BBH) mergers using the LIGO-Virgo Gravitational-Wave Transient Catalog GWTC-2. Assuming that the progenitor formation rate follows the star formation rate (SFR), the data favor that $43$--$100%$ of mergers have delay times $<4.5$ Gyr (90% credibility). Adopting a model for the metallicity evolution, we derive joint constraints for the metallicity-dependence of the BBH formation efficiency and the distribution of time delays between formation and merger. Short time delays are favored regardless of the assumed metallicity dependence, although the preference for short delays weakens as we consider stricter low-metallicity thresholds for BBH formation. For a $p(tau) propto tau^{-1}$ time delay distribution and a progenitor formation rate that follows the SFR without metallicity dependence, we find that $tau_mathrm{min}<2.2$ Gyr, whereas considering only the low-metallicity $Z < 0.3,Z_odot$ SFR, $tau_mathrm{min} < 3.0$ Gyr (90% credibility). Alternatively, if we assume long time delays, the progenitor formation rate must peak at higher redshifts than the SFR. For example, for a $p(tau) propto tau^{-1}$ time delay distribution with $tau_mathrm{min} = 4$ Gyr, the inferred progenitor rate peaks at $z > 3.9$ (90% credibility). Finally, we explore whether the inferred formation rate and time delay distribution vary with BBH mass.
80 - Wen Zhao , Linqing Wen 2017
We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational -wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the US, Europe, China and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. We in particular examine the effect of the Earths rotation, as GW signals from BNS and low mass NSBH systems could be hours long for 3G detectors. We find that, a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially those edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg$^2$ for BNSs at a redshift of $z=0.1$. The medium angular resolution for a network of two CE detectors in the US and Europe respectively is around 20 deg$^2$ at $z=0.2$ for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of $z=0.5$. The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. We discuss the implications of our results to constrain the Hubble constant $H_0$, the deceleration parameter $q_0$ and the equation-of-state (EoS) of dark energy. We find that in general, if 10 BNSs or NSBHs at $z=0.1$ with known redshifts are detected, $H_0$ can be measured with an accuracy of $0.9%$. If 1000 face-on BNSs at $z<2$ are detected with known redshifts, we are able to achieve $Delta q_0=0.002$, or $Delta w_0=0.03$ and $Delta w_a=0.2$ for dark energy.(Abridged version).
Third-generation (3G) gravitational-wave (GW) detectors will be able to observe binary-black-hole mergers (BBHs) up to redshift of $sim 30$. This gives unprecedented access to the formation and evolution of BBHs throughout cosmic history. In this pap er we consider three sub-populations of BBHs originating from the different evolutionary channels: isolated formation in galactic fields, dynamical formation in globular clusters and mergers of black holes formed from Population III (Pop III) stars at very high redshift. Using input from populations synthesis analyses, we created two months of simulated data of a network of 3G detectors made of two Cosmic Explorers and an Einstein Telescope, consisting of $sim16000$ field and cluster BBHs as well as $sim400$ Pop III BBHs. First, we show how one can use non-parametric models to infer the existence and characteristic of a primary and secondary peak in the merger rate distribution. In particular, the location and the height of the secondary peak around $zapprox 12$, arising from the merger of Pop III remnants, can be constrained at $mathcal{O}(10%)$ level. Then we perform a modeled analysis, using phenomenological templates for the merger rates of the three sub-population, and extract the branching ratios and the characteristic parameters of the merger rate densities of the individual formation channels. With this modeled method, the uncertainty on the measurement of the fraction of Pop III BBHs can be improved to $lesssim 10%$, while the ratio between field and cluster BBHs can be measured with an uncertainty of $sim 50%$.
Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgos first gravitational-wave catalog, GWTC-1, we investigate whether the power-law fit to the BH mass spectrum can also accommodate the binary neutron star (BNS) event GW170817, or whether we require an additional feature, such as a mass gap, in between the NS and BH populations. We find that with respect to the power-law fit to binary black hole (BBH) masses, GW170817 is an outlier at the 0.13% level, suggesting a distinction between NS and BH masses. A single power-law fit across the entire mass range is in mild tension with: (a) the detection of one source in the BNS mass range ($sim 1$--$2.5 ,M_odot$), (b) the absence of detections in the mass-gap range ($sim 2.5$--$5 ,M_odot$), and (c) the detection of 10 sources in the BBH mass range ($gtrsim 5 ,M_odot$). Instead, the data favor models with a feature between NS and BH masses, including a mass gap (Bayes factor of 4.6) and a break in the power law, with a steeper slope at NS masses compared to BH masses (91% credibility). We estimate the merger rates of compact binaries based on our fit to the global mass distribution, finding $mathcal{R}_mathrm{BNS} = 871^{+3015}_{-805} mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ and $mathcal{R}_mathrm{BBH} = 47.5^{+57.9}_{-28.8} mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. We conclude that, even in the absence of any prior knowledge of the difference between NSs and BHs, the gravitational-wave data alone already suggest two distinct populations of compact objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا