ترغب بنشر مسار تعليمي؟ اضغط هنا

Does Matter Matter? Using the mass distribution to distinguish neutron stars and black holes

64   0   0.0 ( 0 )
 نشر من قبل Maya Fishbach
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgos first gravitational-wave catalog, GWTC-1, we investigate whether the power-law fit to the BH mass spectrum can also accommodate the binary neutron star (BNS) event GW170817, or whether we require an additional feature, such as a mass gap, in between the NS and BH populations. We find that with respect to the power-law fit to binary black hole (BBH) masses, GW170817 is an outlier at the 0.13% level, suggesting a distinction between NS and BH masses. A single power-law fit across the entire mass range is in mild tension with: (a) the detection of one source in the BNS mass range ($sim 1$--$2.5 ,M_odot$), (b) the absence of detections in the mass-gap range ($sim 2.5$--$5 ,M_odot$), and (c) the detection of 10 sources in the BBH mass range ($gtrsim 5 ,M_odot$). Instead, the data favor models with a feature between NS and BH masses, including a mass gap (Bayes factor of 4.6) and a break in the power law, with a steeper slope at NS masses compared to BH masses (91% credibility). We estimate the merger rates of compact binaries based on our fit to the global mass distribution, finding $mathcal{R}_mathrm{BNS} = 871^{+3015}_{-805} mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ and $mathcal{R}_mathrm{BBH} = 47.5^{+57.9}_{-28.8} mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. We conclude that, even in the absence of any prior knowledge of the difference between NSs and BHs, the gravitational-wave data alone already suggest two distinct populations of compact objects.

قيم البحث

اقرأ أيضاً

This white paper highlights compact object and fundamental physics science opportunities afforded by high-throughput broadband (0.1-60 keV) X-ray polarization observations. X-ray polarimetry gives new observables with geometric information about stel lar remnants which are many orders of magnitude too small for direct imaging. The X-ray polarimetric data also reveal details about the emission mechanisms and the structure of the magnetic fields in and around the most extreme objects in the Universe. Whereas the Imaging X-ray Polarimetry Explorer (IXPE) to be launched in 2021 will obtain first results for bright objects, a follow-up mission could be one order of magnitude more sensitive and would be able to use a broader bandpass to perform physics type experiments for representative samples of sources.
The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic populati on of neutron stars. In contrast to the bimodal Galactic population detected primarily as radio pulsars, the masses of neutron stars in gravitational-wave binaries are thus far consistent with a uniform distribution, with a greater prevalence of high-mass neutron stars. The maximum mass in the gravitational-wave population agrees with that inferred from the neutron stars in our Galaxy and with expectations from dense matter.
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitatio nal waves produced during the formation of primordial black holes from the collapse of sizeable scalar perturbations generated during inflation. This possibility has two predictions: $i$) the primordial black holes may comprise the totality of the dark matter with the dominant contribution to their mass function falling in the range $(10^{-15}div 10^{-11}) M_odot$ and $ii$) the gravitational wave stochastic background will be seen as well by the LISA experiment.
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter particles. From this distribution function, we calculate ann ihilation rates and observable gamma-ray spectra for a few simple dark matter models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the dark matter annihilation cross section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding $600%$, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
We consider the observational properties of a static black hole space-time immersed in a dark matter envelope. We thus investigate how the modifications to geometry, induced by the presence of dark matter affect the luminosity of the black holes accr etion disk. We show that the same disks luminosity produced by a black hole in vacuum may be produced by a smaller black hole if surrounded by dark matter under certain conditions. In particular, we demonstrate that the luminosity of the disk is markedly altered by dark matters presence, suggesting that mass estimation of distant super-massive black holes may be changed if they are immersed in dark matter. We argue that a similar effect holds in more realistic scenarios and we discuss about the refractive index related to dark matter lensing. Hence we show how this may help explain the observed luminosity of super-massive black holes in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا