ﻻ يوجد ملخص باللغة العربية
We study evolution of a hierarchical four-body (2+2) system composed by a pair of mass-transferring white dwarf binaries. Applying a simplified model around the synchronous state of two inner orbital periods, we newly find that the four body system could settle down to a limit cycle with a small period gap. The period gap generates an amplitude variation of emitted gravitational waves, as a beat effect. Depending on model parameters, the beat period could be 1-10 yr and a large amplitude variation might be observed by space gravitational-wave detectors.
The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic populati
We study the effect of tidal forcing on gravitational wave signals from tidally relaxed white dwarf pairs in the LISA, DECIGO and BBO frequency band ($0.1-100,{rm mHz}$). We show that for stars not in hydrostatic equilibrium (in their own rotating fr
We explore the prospects of detecting of Galactic double white dwarf (DWD) binaries with the space-based gravitational wave (GW) observatory TianQin. In this work, we analyze both a sample of currently known DWDs and a realistic synthetic population
We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star-white-dwarf (NS-WD) binaries, and the detectability of these binaries by space GW detectors (e.g., Laser Interferometer
We report on the gravitational wave signal computed in the context of a three-dimensional simulation of a core collapse supernova explosion of a 15 Solar mass star. The simulation was performed with our neutrino hydrodynamics code Chimera. We detail