ﻻ يوجد ملخص باللغة العربية
Recently, artificial neural networks have been gaining momentum in the field of gravitational wave astronomy, for example in surrogate modelling of computationally expensive waveform models for binary black hole inspiral and merger. Surrogate modelling yields fast and accurate approximations of gravitational waves and neural networks have been used in the final step of interpolating the coefficients of the surrogate model for arbitrary waveforms outside the training sample. We investigate the existence of underlying structures in the empirical interpolation coefficients using autoencoders. We demonstrate that when the coefficient space is compressed to only two dimensions, a spiral structure appears, wherein the spiral angle is linearly related to the mass ratio. Based on this finding, we design a spiral module with learnable parameters, that is used as the first layer in a neural network, which learns to map the input space to the coefficients. The spiral module is evaluated on multiple neural network architectures and consistently achieves better speed-accuracy trade-off than baseline models. A thorough experimental study is conducted and the final result is a surrogate model which can evaluate millions of input parameters in a single forward pass in under 1ms on a desktop GPU, while the mismatch between the corresponding generated waveforms and the ground-truth waveforms is better than the compared baseline methods. We anticipate the existence of analogous underlying structures and corresponding computational gains also in the case of spinning black hole binaries.
We construct few deep generative models of gravitational waveforms based on the semi-supervising scheme of conditional autoencoders and their variational extensions. Once the training is done, we find that our best waveform model can generate the ins
Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects. Faster numerical simulation of the technological process would allow for faster and cheaper design cycles of new products. In this work, w
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved gro
Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these resul
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of