ﻻ يوجد ملخص باللغة العربية
Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these results we make use of meta-priors believed useful for downstream tasks, such as disentanglement and hierarchical organization of features. In particular, we uncover three main mechanisms to enforce such properties, namely (i) regularizing the (approximate or aggregate) posterior distribution, (ii) factorizing the encoding and decoding distribution, or (iii) introducing a structured prior distribution. While there are some promising results, implicit or explicit supervision remains a key enabler and all current methods use strong inductive biases and modeling assumptions. Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This pape
This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the com
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It i
Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contra
While variational autoencoders have been successful generative models for a variety of tasks, the use of conventional Gaussian or Gaussian mixture priors are limited in their ability to capture topological or geometric properties of data in the laten