ﻻ يوجد ملخص باللغة العربية
We construct few deep generative models of gravitational waveforms based on the semi-supervising scheme of conditional autoencoders and their variational extensions. Once the training is done, we find that our best waveform model can generate the inspiral-merger waveforms of binary black hole coalescence with more than $97%$ average overlap matched filtering accuracy for the mass ratio between $1$ and $10$. Besides, the generation time of a single waveform takes about one millisecond, which is about $10$ to $100$ times faster than the EOBNR algorithm running on the same computing facility. Moreover, these models can also help to explore the space of waveforms. That is, with mainly the low-mass-ratio training set, the resultant trained model is capable of generating large amount of accurate high-mass-ratio waveforms. This result implies that our generative model can speed up the waveform generation for the low latency search of gravitational wave events. With the improvement of the accuracy in future work, the generative waveform model may also help to speed up the parameter estimation and can assist the numerical relativity in generating the waveforms of higher mass ratio by progressively self-training.
We combine hierarchical Bayesian modeling with a flow-based deep generative network, in order to demonstrate that one can efficiently constraint numerical gravitational wave (GW) population models at a previously intractable complexity. Existing tech
Recently, artificial neural networks have been gaining momentum in the field of gravitational wave astronomy, for example in surrogate modelling of computationally expensive waveform models for binary black hole inspiral and merger. Surrogate modelli
A pre-trained generator has been frequently adopted in compressed sensing (CS) due to its ability to effectively estimate signals with the prior of NNs. In order to further refine the NN-based prior, we propose a framework that allows the generator t
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved gro
Gravitational wave (GW) detection is now commonplace and as the sensitivity of the global network of GW detectors improves, we will observe $mathcal{O}(100)$s of transient GW events per year. The current methods used to estimate their source paramete