ﻻ يوجد ملخص باللغة العربية
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives the gravitational interaction. Our interest lies in exploring the cosmological bouncing scenarios in a flat Friedmann-Lima^itre-Robertson-Walker (FLRW) spacetime within this framework. We explore bouncing scenarios with two different Lagrangian forms of $f(Q)$ such as a linearly and non-linearly dependence on $Q$. We have successfully examined all the energy conditions and stability analysis for both models to present a matter bounce.
In the context of extended Teleparallel gravity theories with a 3+1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lem
We construct a Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity by employing the Weyl compensator formalism. The low-energy dynamics has a single spin two gravition without a scalar degree of freedom. By construction,
Braneworld models are interesting theoretical and phenomenological frameworks to search for new physics beyond the standard model of particles and cosmology. In this work, we discuss braneworld models whose gravitational dynamics are governed by tele
We show that it is possible to realize a cosmological bouncing solution in an anisotropic but homogeneous Bianchi-I background in a class of non-local, infinite derivative theories of gravity. We show that the anisotropic shear grows slower than in g
We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel $f(T, B)$ gravity. Here, $f(T,B)$ is such that $f_1(T,B)=T+k_1B^{n_1}$ and $f_2(T,B)=B+k_2T^{n_2}$, where $n_{1,2}$ and $k_{1,2}$ are parameters that control the influen