ترغب بنشر مسار تعليمي؟ اضغط هنا

Teleparallel gravity: Effects of torsion in 6D braneworlds

248   0   0.0 ( 0 )
 نشر من قبل Carlos A. S. Almeida
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Braneworld models are interesting theoretical and phenomenological frameworks to search for new physics beyond the standard model of particles and cosmology. In this work, we discuss braneworld models whose gravitational dynamics are governed by teleparallel $f(T)$ gravities. Here, we emphasize a codimension two axisymmetric model, also known as a string-like brane. Likewise, in the 5D domain-walls models, the $f(T)$ gravitational modification leads to a phase transition on the perfect fluid source providing a brane-splitting mechanism. Furthermore, the torsion changes the gravitational perturbations. The torsion produces new potential wells inside the brane core leading to a massless mode more localized around the ring structures. In addition, the torsion keeps a gapless non-localizable and a stable tower of massive modes in the bulk.



قيم البحث

اقرأ أيضاً

We study the properties of gravity and bulk fields living in a torsion warped braneworld. The torsion is driven by a background vector whose norm provides a source for the bulk cosmological constant. For a vector as the derivative of a scalar field, we find new isotropic and anisotropic thick brane geometries. We analyse the features of bosonic and fermionic fields in this isotropic and in standing wave scenarios. The background vector provides nonminimal coupling between the field and the geometry leading to modifications in the Kaluza-Klein states. The spinor connection is modified by the torsion and a derivative Yukawa-like coupling is proposed. The effects of these new couplings are investigated.
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives the gravitational interaction. Our interest lies in exploring the cosmological bouncing scenarios in a flat Friedmann-Lima^itre-Robertson-Walker (FLRW) spacetime within this framework. We explore bouncing scenarios with two different Lagrangian forms of $f(Q)$ such as a linearly and non-linearly dependence on $Q$. We have successfully examined all the energy conditions and stability analysis for both models to present a matter bounce.
In the context of extended Teleparallel gravity theories with a 3+1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lem a^itre-Robertson-Walker geometry in four-dimensional spacetime with standard fluids exclusively. We study different types of gravitational Lagrangians and reconstruct solutions provided by analytical expressions for either the cosmological scale factor or the Hubble parameter. We also show that it is possible to find Lagrangians of this type without a cosmological constant such that the behaviour of the LCDM model is precisely mimicked. The new Lagrangians may also lead to other phenomenological consequences opening up the possibility for new theories to compete directly with other extensions of General Relativity.
We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel $f(T, B)$ gravity. Here, $f(T,B)$ is such that $f_1(T,B)=T+k_1B^{n_1}$ and $f_2(T,B)=B+k_2T^{n_2}$, where $n_{1,2}$ and $k_{1,2}$ are parameters that control the influen ce of torsion and the boundary term. We assume Yukawa coupling, where one scalar field is coupled to a Dirac spinor field. We show how the $n_{1,2}$ and $k_{1,2}$ parameters control the width of the massless Kaluza-Klein mode, the breadth of non-normalized massive fermionic modes, and the properties of the analogue quantum-potential near the origin.
80 - Yu Nakayama 2021
We construct a Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity by employing the Weyl compensator formalism. The low-energy dynamics has a single spin two gravition without a scalar degree of freedom. By construction, it is equivalent to the unimodular gravity (as well as the Einstein gravity) at the non-linear level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا