ﻻ يوجد ملخص باللغة العربية
Braneworld models are interesting theoretical and phenomenological frameworks to search for new physics beyond the standard model of particles and cosmology. In this work, we discuss braneworld models whose gravitational dynamics are governed by teleparallel $f(T)$ gravities. Here, we emphasize a codimension two axisymmetric model, also known as a string-like brane. Likewise, in the 5D domain-walls models, the $f(T)$ gravitational modification leads to a phase transition on the perfect fluid source providing a brane-splitting mechanism. Furthermore, the torsion changes the gravitational perturbations. The torsion produces new potential wells inside the brane core leading to a massless mode more localized around the ring structures. In addition, the torsion keeps a gapless non-localizable and a stable tower of massive modes in the bulk.
We study the properties of gravity and bulk fields living in a torsion warped braneworld. The torsion is driven by a background vector whose norm provides a source for the bulk cosmological constant. For a vector as the derivative of a scalar field,
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives
In the context of extended Teleparallel gravity theories with a 3+1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lem
We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel $f(T, B)$ gravity. Here, $f(T,B)$ is such that $f_1(T,B)=T+k_1B^{n_1}$ and $f_2(T,B)=B+k_2T^{n_2}$, where $n_{1,2}$ and $k_{1,2}$ are parameters that control the influen
We construct a Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity by employing the Weyl compensator formalism. The low-energy dynamics has a single spin two gravition without a scalar degree of freedom. By construction,