ﻻ يوجد ملخص باللغة العربية
We show that it is possible to realize a cosmological bouncing solution in an anisotropic but homogeneous Bianchi-I background in a class of non-local, infinite derivative theories of gravity. We show that the anisotropic shear grows slower than in general relativity during the contraction phase, peaks to a finite value at the bounce point, and then decreases as the universe asymptotes towards isotropy and homogeneity, and ultimately to de Sitter. Along with a cosmological constant, the matter sector required to drive such a bounce is found to consist of three components - radiation, stiff matter and $k$-matter (whose energy density decays like the inverse square of the average scale factor). Generically, $k$-matter exerts anisotropic pressures. We will test the bouncing solution in local and non-local gravity and show that in the latter case it is possible to simultaneously satisfy positivity of energy density and, at least in the late time de Sitter phase, avoid the introduction of propagating ghost/tachyonic modes.
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives
We present a new bouncing cosmological solution of the non-local theory known as infinite derivative gravity, which goes beyond the recursive ansatz, ${Box R = r_1 R +r_2}$. The non-local field equations are evaluated using the spectral decomposition
It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the
In this paper, we study a class of higher derivative, non-local gravity which admits homogeneous and isotropic non-singular, bouncing universes in the absence of matter. At the linearized level, the theory propagates only a scalar degree of freedom,