ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermion localization in braneworld teleparallel f(T,B) gravity

196   0   0.0 ( 0 )
 نشر من قبل Carlos A. S. Almeida
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel $f(T, B)$ gravity. Here, $f(T,B)$ is such that $f_1(T,B)=T+k_1B^{n_1}$ and $f_2(T,B)=B+k_2T^{n_2}$, where $n_{1,2}$ and $k_{1,2}$ are parameters that control the influence of torsion and the boundary term. We assume Yukawa coupling, where one scalar field is coupled to a Dirac spinor field. We show how the $n_{1,2}$ and $k_{1,2}$ parameters control the width of the massless Kaluza-Klein mode, the breadth of non-normalized massive fermionic modes, and the properties of the analogue quantum-potential near the origin.

قيم البحث

اقرأ أيضاً

Braneworld scenarios consider our observable universe as a brane embedded in a 5D space, named bulk. In this work, I derive the field equations of a braneworld model in a generalized theory of gravitation, namely $f(R,T)$ gravity, with $R$ and $T$, r epresenting the Ricci scalar and the trace of the energy-momentum tensor, respectively. The cosmological parameters obtained from this approach are in agreement with recent constraints from Supernovae Ia data combined with baryon acoustic oscillations and cosmic microwave background observations, favouring such an alternative description of the universe dynamics.
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat ionary solutions of the Hubble parameter ($H$) represented by $H(N)=left(A exp beta N+B alpha ^Nright)^{gamma }$, $H(N)=left(A alpha ^N+B log Nright)^{gamma }$, and $H(N)=left(A e^{beta N}+B log Nright)^{gamma }$, where $A$, $beta$, $B$, $alpha$, $gamma$ are free parameters, and $N$ represents the number of e-foldings. We carry out the analysis with the simplest minimal $f(R,T)$ function of the form $f(R,T)= R + chi T$, where $chi$ is the model parameter. We report that for the chosen $f(R,T)$ gravity model, viable cosmologies are obtained compatible with observations by conveniently setting the Lagrange multiplier and the mimetic potential.
84 - Simran Arora , P.K. Sahoo 2020
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace of the matter-energy momentum tensor $T$. In this paper, we examined the essence of some well prompted forms of $f(Q,T)$ gravity models i.e. $f(Q,T)= mQ+bT$ and $f(Q,T)= m Q^{n+1}+b T$ where $m$, $b$, and $n$ are model parameters. We have used the proposed deceleration parameter, which predicts both decelerated and accelerated phases of the Universe, with the transition redshift by recent observations and obtains energy density ($rho$) and pressure ($p$) to study the various energy conditions for cosmological models. The equation of state parameter ($omegasimeq -1$) in the present model also supports the accelerating behavior of the Universe. In both, the models, the null, weak, and dominant energy conditions are obeyed with violating strong energy conditions as per the present accelerated expansion.
In this paper, we study the thick brane scenario constructed in the recently proposed $f(T,mathcal{T})$ theories of gravity, where $T$ is called the torsion scalar, and $mathcal{T}$ is the trace of the energy-momentum tensor. We use the first-order f ormalism to find analytical solutions for models that include a scalar field as a source. In particular, we describe two interesting cases in which, in the first, we obtain a double-kink solution, which generates a splitting in the brane. In the second case, proper management of a kink solution obtained generates a splitting in the brane intensified by the torsion parameter, evinced by the energy density components satisfying the weak and strong energy conditions. In addition, we investigate the behavior of the gravitational perturbations in this scenario. The parameters that control the torsion and the trace of the energy-momentum tensor tend to shift the massive modes to the core of the brane, keeping a gapless non-localizable and stable tower of massive modes and producing more localized massless modes.
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The traceless version of the $f(R,T)$ gravity gives rise to a possible wormhole geometry without need for exotic matter, which violates the principle of causality. Using a physically plausible ansatz for the wormholes shape function, the traceless field equations lead to compliance with the weak energy condition at very well defined intervals of the coupling constant $lambda$ in the $f(R,T)=R+2lambda T$ form. Our solution leads to other well-behaved energy conditions considering some possible values of the parameter $omega$ in the equation of state $p_r=omega rho$, with $p_r$ being the radial pressure and $rho $ the density. The energy conditions are obeyed in the ranges $lambda < -4pi$ and $omega > -1$. Through the calculation of the Volume Integral Quantifier, one sees that this wormholes can be traversable and respect the causality, since the amount of exotic matter in its interior can be arbitrarily small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا