ترغب بنشر مسار تعليمي؟ اضغط هنا

Polar state memory in active fluids

164   0   0.0 ( 0 )
 نشر من قبل Bo Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spontaneous emergence of correlated states such as flocks and vortices are prime examples of remarkable collective dynamics and self-organization observed in active matter. The formation of globally correlated polar states in geometrically confined systems proceeds through the emergence of a macroscopic steadily rotating vortex that spontaneously selects a clockwise or counterclockwise global chiral state. Here, we reveal that a global vortex formed by colloidal rollers exhibits state memory. The information remains stored even when the energy injection is ceased and the activity is terminated. We show that a subsequent formation of the collective states upon re-energizing the system is not random. We combine experiments and simulations to elucidate how a combination of hydrodynamic and electrostatic interactions leads to hidden asymmetries in the local particle positional order encoding the chiral state of the system. The stored information can be accessed and exploited to systematically command subsequent polar states of active liquid through temporal control of the activity. With the chirality of the emergent collective states controlled on-demand, active liquids offer new possibilities for flow manipulation, transport, and mixing at the microscale.



قيم البحث

اقرأ أيضاً

146 - Leiming Chen , Chiu Fan Lee , 2018
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami c, roughness, and anisotropy exponents that describe the scaling behavior of such incompressible systems. This is the first time a compelling argument has been given for the exact values of the anomalous scaling exponents of a flock moving through an isotropic medium in $d>2$.
Meso-scale turbulence was originally observed experimentally in various suspensions of swimming bacteria, as well as in the collective motion of active colloids. The corresponding large-scale dynamical patterns were reproduced in a simple model of a polar fluid, assuming a constant density of active particles. Recent, more detailed experimental studies revealed additional interesting aspects, such as anomalous velocity statistics and clustering phenomena. Those phenomena cannot be explained by currently available models for active polar fluids. Herein, we extend the continuum model suggested by Dunkel et al. to include density variations and a feedback between the local density and self-propulsion speed of the active particles. If the velocity decreases strong enough with the density, a linear stability analysis of the resulting model shows that, in addition to the short-wavelength instability of the original model, a long-wavelength instability occurs. This is typically observed for high densities of polar active particles and is analogous to the well-known phenomenon of motility-induced phase separation (MIPS) in scalar active matter. We determine a simple phase diagram indicating the linear instabilities and perform systematic numerical simulations for the various regions in the corresponding parameter space. The interplay between the well understood short-range instability and the long-range instability leads to interesting dynamics and novel phenomena concerning nucleation and coarsening processes. Our simulation results display a rich variety of novel patterns, including phase separation into domains with dynamically changing irregularly shaped boundaries. Anomalous velocity statistics are observed in all phases where the system segregates into regions of high and low densities. This offers a simple explanation for their occurrence in recent experiments with bacterial suspensions.
76 - Yan Levin , Paulo S. Kuhn , 2000
A model of polar fluid is studied theoretically. The interaction potential, in addition to dipole-dipole term, possesses a dispersion contribution of the van der Waals-London form. It is found that when the dispersion force is comparable to dipole-di pole interaction, the fluid separates into coexisting liquid and gas phases. The calculated critical parameters are in excellent agreement with Monte Carlo simulations. When the strength of dispersion attraction is bellow critical, no phase separation is found.
The dynamics of dry active matter have implications for a diverse collection of biological phenomena spanning a range of length and time scales, such as animal flocking, cell tissue dynamics, and swarming of inserts and bacteria. Uniting these system s are a common set of symmetries and conservation laws, defining dry active fluids as a class of physical system. Many interesting behaviours have been observed at high densities, which remain difficult to simulate due to the computational demand. Here, we show how two-dimensional dry active fluids in a dense regime can be studied using a simple modification of the lattice Boltzmann method. We apply our method on a model that exhibits motility-induced phase separation, and an active model with contact inhibition of locomotion, which has relevance to collective cell migration. For the latter, we uncover multiple novel phase transitions: two first-order and one potentially critical. We further support our simulation results with an analytical treatment of the hydrodynamic equations obtained via a Chapman-Enskog coarse-graining procedure.
We study a novel phase of active polar fluids, which is characterized by the continuous creation and destruction of dense clusters due to self-sustained turbulence. This state arises due to the interplay of the self-advection of the aligned swimmers and their defect topology. The typical cluster size is determined by the characteristic vortex size. Our results are obtained by investigating a continuum model of compressible polar active fluids, which incorporates typical experimental observations in bacterial suspensions by assuming a non-monotone dependence of speed on density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا