ﻻ يوجد ملخص باللغة العربية
The dynamics of dry active matter have implications for a diverse collection of biological phenomena spanning a range of length and time scales, such as animal flocking, cell tissue dynamics, and swarming of inserts and bacteria. Uniting these systems are a common set of symmetries and conservation laws, defining dry active fluids as a class of physical system. Many interesting behaviours have been observed at high densities, which remain difficult to simulate due to the computational demand. Here, we show how two-dimensional dry active fluids in a dense regime can be studied using a simple modification of the lattice Boltzmann method. We apply our method on a model that exhibits motility-induced phase separation, and an active model with contact inhibition of locomotion, which has relevance to collective cell migration. For the latter, we uncover multiple novel phase transitions: two first-order and one potentially critical. We further support our simulation results with an analytical treatment of the hydrodynamic equations obtained via a Chapman-Enskog coarse-graining procedure.
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami
Active matter is not only indispensable to our understanding of diverse biological processes, but also provides a fertile ground for discovering novel physics. Many emergent properties impossible for equilibrium systems have been demonstrated in acti
Spontaneous emergence of correlated states such as flocks and vortices are prime examples of remarkable collective dynamics and self-organization observed in active matter. The formation of globally correlated polar states in geometrically confined s
A lattice Boltzmann model for amphiphilic fluid dynamics is presented. It is a ternary model, in that it conserves mass separately for each chemical species present (water, oil, amphiphile), and it maintains an orientational degree of freedom for the
How fast must an oriented collection of extensile swimmers swim to escape the instability of viscous active suspensions? We show that the answer lies in the dimensionless combination $R=rho v_0^2/2sigma_a$, where $rho$ is the suspension mass density,