ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering novel phase transitions in dense dry polar active fluids using a lattice Boltzmann method

77   0   0.0 ( 0 )
 نشر من قبل Chiu Fan Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of dry active matter have implications for a diverse collection of biological phenomena spanning a range of length and time scales, such as animal flocking, cell tissue dynamics, and swarming of inserts and bacteria. Uniting these systems are a common set of symmetries and conservation laws, defining dry active fluids as a class of physical system. Many interesting behaviours have been observed at high densities, which remain difficult to simulate due to the computational demand. Here, we show how two-dimensional dry active fluids in a dense regime can be studied using a simple modification of the lattice Boltzmann method. We apply our method on a model that exhibits motility-induced phase separation, and an active model with contact inhibition of locomotion, which has relevance to collective cell migration. For the latter, we uncover multiple novel phase transitions: two first-order and one potentially critical. We further support our simulation results with an analytical treatment of the hydrodynamic equations obtained via a Chapman-Enskog coarse-graining procedure.

قيم البحث

اقرأ أيضاً

146 - Leiming Chen , Chiu Fan Lee , 2018
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami c, roughness, and anisotropy exponents that describe the scaling behavior of such incompressible systems. This is the first time a compelling argument has been given for the exact values of the anomalous scaling exponents of a flock moving through an isotropic medium in $d>2$.
Active matter is not only indispensable to our understanding of diverse biological processes, but also provides a fertile ground for discovering novel physics. Many emergent properties impossible for equilibrium systems have been demonstrated in acti ve systems. These emergent features include motility-induced phase separation, long-ranged ordered (collective motion) phase in two dimensions, and order-disorder phase co-existences (banding and reverse-banding regimes). Here, we unify these diverse phase transitions and phase co-existences into a single formulation based on generic hydrodynamic equations for active fluids. We also reveal a novel co-moving co-existence phase and a putative novel critical point.
Spontaneous emergence of correlated states such as flocks and vortices are prime examples of remarkable collective dynamics and self-organization observed in active matter. The formation of globally correlated polar states in geometrically confined s ystems proceeds through the emergence of a macroscopic steadily rotating vortex that spontaneously selects a clockwise or counterclockwise global chiral state. Here, we reveal that a global vortex formed by colloidal rollers exhibits state memory. The information remains stored even when the energy injection is ceased and the activity is terminated. We show that a subsequent formation of the collective states upon re-energizing the system is not random. We combine experiments and simulations to elucidate how a combination of hydrodynamic and electrostatic interactions leads to hidden asymmetries in the local particle positional order encoding the chiral state of the system. The stored information can be accessed and exploited to systematically command subsequent polar states of active liquid through temporal control of the activity. With the chirality of the emergent collective states controlled on-demand, active liquids offer new possibilities for flow manipulation, transport, and mixing at the microscale.
A lattice Boltzmann model for amphiphilic fluid dynamics is presented. It is a ternary model, in that it conserves mass separately for each chemical species present (water, oil, amphiphile), and it maintains an orientational degree of freedom for the amphiphilic species. Moreover, it models fluid interactions at the microscopic level by introducing self-consistent forces between the particles, rather than by positing a Landau free energy functional. This combination of characteristics fills an important need in the hierarchy of models currently available for amphiphilic fluid dynamics, enabling efficient computer simulation and furnishing new theoretical insight. Several computational results obtained from this model are presented and compared to existing lattice-gas model results. In particular, it is noted that lamellar structures, which are precluded by the Peierls instability in two-dimensional systems with kinetic fluctuations, are not observed in lattice-gas models, but are easily found in the corresponding lattice Boltzmann models. This points out a striking difference in the phenomenology accessible to each type of model.
How fast must an oriented collection of extensile swimmers swim to escape the instability of viscous active suspensions? We show that the answer lies in the dimensionless combination $R=rho v_0^2/2sigma_a$, where $rho$ is the suspension mass density, $v_0$ the swim speed and $sigma_a$ the active stress. Linear stability analysis shows that for small $R$ disturbances grow at a rate linear in their wavenumber $q$, and that the dominant instability mode involves twist. The resulting steady state in our numerical studies is isotropic hedgehog-defect turbulence. Past a first threshold $R$ of order unity we find a slower growth rate, of $O(q^2)$; the numerically observed steady state is {it phase-turbulent}: noisy but {it aligned} on average. We present numerical evidence in three and two dimensions that this inertia driven flocking transition is continuous, with a correlation length that grows on approaching the transition. For much larger $R$ we find an aligned state linearly stable to perturbations at all $q$. Our predictions should be testable in suspensions of mesoscale swimmers [D Klotsa, Soft Matter textbf{15}, 8946 (2019)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا