ﻻ يوجد ملخص باللغة العربية
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynamic, roughness, and anisotropy exponents that describe the scaling behavior of such incompressible systems. This is the first time a compelling argument has been given for the exact values of the anomalous scaling exponents of a flock moving through an isotropic medium in $d>2$.
We present a hydrodynamic theory of polar active smectics, for systems both with and without number conservation. For the latter, we find quasi long-ranged smectic order in d=2 and long-ranged smectic order in d=3. In d=2 there is a Kosterlitz-Thoule
Meso-scale turbulence was originally observed experimentally in various suspensions of swimming bacteria, as well as in the collective motion of active colloids. The corresponding large-scale dynamical patterns were reproduced in a simple model of a
A model of polar fluid is studied theoretically. The interaction potential, in addition to dipole-dipole term, possesses a dispersion contribution of the van der Waals-London form. It is found that when the dispersion force is comparable to dipole-di
Spontaneous emergence of correlated states such as flocks and vortices are prime examples of remarkable collective dynamics and self-organization observed in active matter. The formation of globally correlated polar states in geometrically confined s
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave ci