ﻻ يوجد ملخص باللغة العربية
A model of polar fluid is studied theoretically. The interaction potential, in addition to dipole-dipole term, possesses a dispersion contribution of the van der Waals-London form. It is found that when the dispersion force is comparable to dipole-dipole interaction, the fluid separates into coexisting liquid and gas phases. The calculated critical parameters are in excellent agreement with Monte Carlo simulations. When the strength of dispersion attraction is bellow critical, no phase separation is found.
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami
Meso-scale turbulence was originally observed experimentally in various suspensions of swimming bacteria, as well as in the collective motion of active colloids. The corresponding large-scale dynamical patterns were reproduced in a simple model of a
Spontaneous emergence of correlated states such as flocks and vortices are prime examples of remarkable collective dynamics and self-organization observed in active matter. The formation of globally correlated polar states in geometrically confined s
Three one-body profiles that correspond to local fluctuations in energy, in entropy, and in particle number are used to describe the equilibrium properties of inhomogeneous classical many-body systems. Local fluctuations are obtained from thermodynam
Many experiments show that protein condensates formed by liquid-liquid phase separation exhibit aging rheological properties. Quantitatively, recent experiments by Jawerth et al. (Science 370, 1317, 2020) show that protein condensates behave as aging