ﻻ يوجد ملخص باللغة العربية
Due to their importance in both data analysis and numerical algorithms, low rank approximations have recently been widely studied. They enable the handling of very large matrices. Tight error bounds for the computationally efficient Gaussian elimination based methods (skeleton approximations) are available. In practice, these bounds are useful for matrices with singular values which decrease quickly. Using the Chebyshev norm, this paper provides improved bounds for the errors of the matrix elements. These bounds are substantially better in the practically relevant cases where the eigenvalues decrease polynomially. Results are proven for general real rectangular matrices. Even stronger bounds are obtained for symmetric positive definite matrices. A simple example is given, comparing these new bounds to earlier ones.
Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues and eigenfunctions of the Markov transition operator from trajectory data. Although the approach has been widely applied in biomolecular simulations, it
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ
Quantum-classical molecular dynamics, as a partial classical limit of the full quantum Schrodinger equation, is a widely used framework for quantum molecular dynamics. The underlying equations are nonlinear in nature, containing a quantum part (repre
Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical rel
We give upper and lower bounds on the determinant of a perturbation of the identity matrix or, more generally, a perturbation of a nonsingular diagonal matrix. The matrices considered are, in general, diagonally dominant. The lower bounds are best po