ﻻ يوجد ملخص باللغة العربية
We give upper and lower bounds on the determinant of a perturbation of the identity matrix or, more generally, a perturbation of a nonsingular diagonal matrix. The matrices considered are, in general, diagonally dominant. The lower bounds are best possible, and in several cases they are stronger than well-known bounds due to Ostrowski and other authors. If $A = I-E$ is an $n times n$ matrix and the elements of $E$ are bounded in absolute value by $varepsilon le 1/n$, then a lower bound of Ostrowski (1938) is $det(A) ge 1-nvarepsilon$. We show that if, in addition, the diagonal elements of $E$ are zero, then a best-possible lower bound is [det(A) ge (1-(n-1)varepsilon),(1+varepsilon)^{n-1}.] Corresponding upper bounds are respectively [det(A) le (1 + 2varepsilon + nvarepsilon^2)^{n/2}] and [det(A) le (1 + (n-1)varepsilon^2)^{n/2}.] The first upper bound is stronger than Ostrowskis bound (for $varepsilon < 1/n$) $det(A) le (1 - nvarepsilon)^{-1}$. The second upper bound generalises Hadamards inequality, which is the case $varepsilon = 1$. A necessary and sufficient condition for our upper bounds to be best possible for matrices of order $n$ and all positive $varepsilon$ is the existence of a skew-Hadamard matrix of order $n$.
Let ${mathcal D}(n)$ be the maximal determinant for $n times n$ ${pm 1}$-matrices, and $mathcal R(n) = {mathcal D}(n)/n^{n/2}$ be the ratio of ${mathcal D}(n)$ to the Hadamard upper bound. Using the probabilistic method, we prove new lower bounds on
Let $D(n)$ be the maximal determinant for $n times n$ ${pm 1}$-matrices, and ${mathcal R}(n) = D(n)/n^{n/2}$ be the ratio of $D(n)$ to the Hadamard upper bound. We give several new lower bounds on ${mathcal R}(n)$ in terms of $d$, where $n = h+d$, $h
Due to their importance in both data analysis and numerical algorithms, low rank approximations have recently been widely studied. They enable the handling of very large matrices. Tight error bounds for the computationally efficient Gaussian eliminat
Let ngeq3 and J_{n}:=circ(J_{1},J_{2},...,J_{n}) and j_{n}:=circ(j_{0},j_{1},...,j_{n-1}) be the ntimesn circulant matrices, associated with the nth Jacobsthal number J_{n} and the nth Jacobsthal-Lucas number j_{n}, respectively. The determinants of
This note contains two remarks. The first remark concerns the extension of the well-known Cayley representation of rotation matrices by skew symmetric matrices to rotation matrices admitting -1 as an eigenvalue and then to all orthogonal matrices. We