ترغب بنشر مسار تعليمي؟ اضغط هنا

Error bounds for dynamical spectral estimation

74   0   0.0 ( 0 )
 نشر من قبل Robert Webber
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues and eigenfunctions of the Markov transition operator from trajectory data. Although the approach has been widely applied in biomolecular simulations, its error properties remain poorly understood. Here we analyze the error of a dynamical spectral estimation method called the variational approach to conformational dynamics (VAC). We bound the approximation error and estimation error for VAC estimates. Our analysis establishes VACs convergence properties and suggests new strategies for tuning VAC to improve accuracy.



قيم البحث

اقرأ أيضاً

The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this paper we consider adjoint-based a posteriori analysis to estimate the error in a quantity of interest of the solution. This error formula is derived by first developing a nodally equivalent finite element method to the spectral deferred correction method. The error formula is then split into various terms, each of which characterizes a different component of the error. These components may be used to determine the optimal strategy for changing the method parameters to best improve the error.
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ tarrow mathbb{C}$ is piecewise analytic, we give a framework, based on the Cauchy integral formula, which can be used to derive {em a priori} and emph{a posteriori} error bounds for Lanczos-FA in terms of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA, these bounds account for fine-grained properties of the spectrum of $mathbf{A}$, such as clustered or isolated eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily extended to finite precision computations using existing theory about the Lanczos algorithm in finite precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic forms $mathbf{b}^textsf{H} f(mathbf{A}) mathbf{b}$, and demonstrate the effectiveness of our bounds with numerical experiments.
255 - Di Fang , Albert Tres 2021
Quantum-classical molecular dynamics, as a partial classical limit of the full quantum Schrodinger equation, is a widely used framework for quantum molecular dynamics. The underlying equations are nonlinear in nature, containing a quantum part (repre sents the electrons) and a classical part (stands for the nuclei). An accurate simulation of the wave function typically requires a time step comparable to the rescaled Planck constant $h$, resulting in a formidable cost when $hll 1$. We prove an additive observable error bound of Schwartz observables for the proposed time-splitting schemes based on semiclassical analysis, which decreases as $h$ becomes smaller. Furthermore, we establish a uniform-in-$h$ observable error bound, which allows an $mathcal{O}(1)$ time step to accurately capture the physical observable regardless of the size of $h$. Numerical results verify our estimates.
Due to their importance in both data analysis and numerical algorithms, low rank approximations have recently been widely studied. They enable the handling of very large matrices. Tight error bounds for the computationally efficient Gaussian eliminat ion based methods (skeleton approximations) are available. In practice, these bounds are useful for matrices with singular values which decrease quickly. Using the Chebyshev norm, this paper provides improved bounds for the errors of the matrix elements. These bounds are substantially better in the practically relevant cases where the eigenvalues decrease polynomially. Results are proven for general real rectangular matrices. Even stronger bounds are obtained for symmetric positive definite matrices. A simple example is given, comparing these new bounds to earlier ones.
Classical a posteriori error analysis for differential equations quantifies the error in a Quantity of Interest (QoI) which is represented as a bounded linear functional of the solution. In this work we consider a posteriori error estimates of a quan tity of interest that cannot be represented in this fashion, namely the time at which a threshold is crossed for the first time. We derive two representations for such errors and use an adjoint-based a posteriori approach to estimate unknown terms that appear in our representation. The first representation is based on linearizations using Taylors Theorem. The second representation is obtained by implementing standard root-finding techniques. We provide several examples which demonstrate the accuracy of the methods. We then embed these error estimates within a framework to provide error bounds on a cumulative distribution function when parameters of the differential equations are uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا