ﻻ يوجد ملخص باللغة العربية
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} rightarrow mathbb{C}$ is piecewise analytic, we give a framework, based on the Cauchy integral formula, which can be used to derive {em a priori} and emph{a posteriori} error bounds for Lanczos-FA in terms of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA, these bounds account for fine-grained properties of the spectrum of $mathbf{A}$, such as clustered or isolated eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily extended to finite precision computations using existing theory about the Lanczos algorithm in finite precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic forms $mathbf{b}^textsf{H} f(mathbf{A}) mathbf{b}$, and demonstrate the effectiveness of our bounds with numerical experiments.
The ubiquitous Lanczos method can approximate $f(A)x$ for any symmetric $n times n$ matrix $A$, vector $x$, and function $f$. In exact arithmetic, the methods error after $k$ iterations is bounded by the error of the best degree-$k$ polynomial unifor
Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues and eigenfunctions of the Markov transition operator from trajectory data. Although the approach has been widely applied in biomolecular simulations, it
Let $A$ be a square complex matrix; $z_1$, ..., $z_{N}inmathbb C$ be arbitrary (possibly repetitive) points of interpolation; $f$ be an analytic function defined on a neighborhood of the convex hull of the union of the spectrum $sigma(A)$ of the matr
Due to their importance in both data analysis and numerical algorithms, low rank approximations have recently been widely studied. They enable the handling of very large matrices. Tight error bounds for the computationally efficient Gaussian eliminat
Quantum-classical molecular dynamics, as a partial classical limit of the full quantum Schrodinger equation, is a widely used framework for quantum molecular dynamics. The underlying equations are nonlinear in nature, containing a quantum part (repre