ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple-criteria Based Active Learning with Fixed-size Determinantal Point Processes

69   0   0.0 ( 0 )
 نشر من قبل Xueying Zhan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Active learning aims to achieve greater accuracy with less training data by selecting the most useful data samples from which it learns. Single-criterion based methods (i.e., informativeness and representativeness based methods) are simple and efficient; however, they lack adaptability to different real-world scenarios. In this paper, we introduce a multiple-criteria based active learning algorithm, which incorporates three complementary criteria, i.e., informativeness, representativeness and diversity, to make appropriate selections in the active learning rounds under different data types. We consider the selection process as a Determinantal Point Process, which good balance among these criteria. We refine the query selection strategy by both selecting the hardest unlabeled data sample and biasing towards the classifiers that are more suitable for the current data distribution. In addition, we also consider the dependencies and relationships between these data points in data selection by means of centroidbased clustering approaches. Through evaluations on synthetic and real-world datasets, we show that our method performs significantly better and is more stable than other multiple-criteria based AL algorithms.

قيم البحث

اقرأ أيضاً

195 - Khashayar Gatmiry 2020
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution $q$ over the subsets of a ground set, we aim to distinguish whether $q$ is a DPP distribution, or $epsilon$-far from all DPP distributions in $ell_1$-distance. In this work, we propose the first algorithm for testing DPPs. Furthermore, we establish a matching lower bound on the sample complexity of DPP testing. This lower bound also extends to showing a new hardness result for the problem of testing the more general class of log-submodular distributions.
Semi-parametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics, or non-linear time series problems, where the system includes a linear and non-linear component. We discuss here the use of a finite Determinantal Point Process (DPP) for approximating semi-parametric models. Recently, Barthelme, Tremblay, Usevich, and Amblard introduced a novel representation of some finite DPPs. These authors formulated extended L-ensembles that can conveniently represent partial-projection DPPs and suggest their use for optimal interpolation. With the help of this formalism, we derive a key identity illustrating the implicit regularization effect of determinantal sampling for semi-parametric regression and interpolation. Also, a novel projected Nystrom approximation is defined and used to derive a bound on the expected risk for the corresponding approximation of semi-parametric regression. This work naturally extends similar results obtained for kernel ridge regression.
Recent object detectors find instances while categorizing candidate regions. As each region is evaluated independently, the number of candidate regions from a detector is usually larger than the number of objects. Since the final goal of detection is to assign a single detection to each object, a heuristic algorithm, such as non-maximum suppression (NMS), is used to select a single bounding box for an object. While simple heuristic algorithms are effective for stand-alone objects, they can fail to detect overlapped objects. In this paper, we address this issue by training a network to distinguish different objects using the relationship between candidate boxes. We propose an instance-aware detection network (IDNet), which can learn to extract features from candidate regions and measure their similarities. Based on pairwise similarities and detection qualities, the IDNet selects a subset of candidate bounding boxes using instance-aware determinantal point process inference (IDPP). Extensive experiments demonstrate that the proposed algorithm achieves significant improvements for detecting overlapped objects compared to existing state-of-the-art detection methods on the PASCAL VOC and MS COCO datasets.
Determinantal Point Processes (DPPs) provide an elegant and versatile way to sample sets of items that balance the point-wise quality with the set-wise diversity of selected items. For this reason, they have gained prominence in many machine learning applications that rely on subset selection. However, sampling from a DPP over a ground set of size $N$ is a costly operation, requiring in general an $O(N^3)$ preprocessing cost and an $O(Nk^3)$ sampling cost for subsets of size $k$. We approach this problem by introducing DPPNets: generative deep models that produce DPP-like samples for arbitrary ground sets. We develop an inhibitive attention mechanism based on transformer networks that captures a notion of dissimilarity between feature vectors. We show theoretically that such an approximation is sensible as it maintains the guarantees of inhibition or dissimilarity that makes DPPs so powerful and unique. Empirically, we demonstrate that samples from our model receive high likelihood under the more expensive DPP alternative.
Generative models have proven to be an outstanding tool for representing high-dimensional probability distributions and generating realistic-looking images. An essential characteristic of generative models is their ability to produce multi-modal outp uts. However, while training, they are often susceptible to mode collapse, that is models are limited in mapping input noise to only a few modes of the true data distribution. In this work, we draw inspiration from Determinantal Point Process (DPP) to propose an unsupervised penalty loss that alleviates mode collapse while producing higher quality samples. DPP is an elegant probabilistic measure used to model negative correlations within a subset and hence quantify its diversity. We use DPP kernel to model the diversity in real data as well as in synthetic data. Then, we devise an objective term that encourages generators to synthesize data with similar diversity to real data. In contrast to previous state-of-the-art generative models that tend to use additional trainable parameters or complex training paradigms, our method does not change the original training scheme. Embedded in an adversarial training and variational autoencoder, our Generative DPP approach shows a consistent resistance to mode-collapse on a wide variety of synthetic data and natural image datasets including MNIST, CIFAR10, and CelebA, while outperforming state-of-the-art methods for data-efficiency, generation quality, and convergence-time whereas being 5.8x faster than its closest competitor.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا