ﻻ يوجد ملخص باللغة العربية
Recent object detectors find instances while categorizing candidate regions. As each region is evaluated independently, the number of candidate regions from a detector is usually larger than the number of objects. Since the final goal of detection is to assign a single detection to each object, a heuristic algorithm, such as non-maximum suppression (NMS), is used to select a single bounding box for an object. While simple heuristic algorithms are effective for stand-alone objects, they can fail to detect overlapped objects. In this paper, we address this issue by training a network to distinguish different objects using the relationship between candidate boxes. We propose an instance-aware detection network (IDNet), which can learn to extract features from candidate regions and measure their similarities. Based on pairwise similarities and detection qualities, the IDNet selects a subset of candidate bounding boxes using instance-aware determinantal point process inference (IDPP). Extensive experiments demonstrate that the proposed algorithm achieves significant improvements for detecting overlapped objects compared to existing state-of-the-art detection methods on the PASCAL VOC and MS COCO datasets.
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to sel
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize region proposal network to propose a fraction of high-quality proposals in a bottom-up fashion. 2) Resize and p
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution $q$ over the subsets of a
Confidence-aware learning is proven as an effective solution to prevent networks becoming overconfident. We present a confidence-aware camouflaged object detection framework using dynamic supervision to produce both accurate camouflage map and meanin
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result