ﻻ يوجد ملخص باللغة العربية
Generative models have proven to be an outstanding tool for representing high-dimensional probability distributions and generating realistic-looking images. An essential characteristic of generative models is their ability to produce multi-modal outputs. However, while training, they are often susceptible to mode collapse, that is models are limited in mapping input noise to only a few modes of the true data distribution. In this work, we draw inspiration from Determinantal Point Process (DPP) to propose an unsupervised penalty loss that alleviates mode collapse while producing higher quality samples. DPP is an elegant probabilistic measure used to model negative correlations within a subset and hence quantify its diversity. We use DPP kernel to model the diversity in real data as well as in synthetic data. Then, we devise an objective term that encourages generators to synthesize data with similar diversity to real data. In contrast to previous state-of-the-art generative models that tend to use additional trainable parameters or complex training paradigms, our method does not change the original training scheme. Embedded in an adversarial training and variational autoencoder, our Generative DPP approach shows a consistent resistance to mode-collapse on a wide variety of synthetic data and natural image datasets including MNIST, CIFAR10, and CelebA, while outperforming state-of-the-art methods for data-efficiency, generation quality, and convergence-time whereas being 5.8x faster than its closest competitor.
Although significant progress has been made in the field of automatic image captioning, it is still a challenging task. Previous works normally pay much attention to improving the quality of the generated captions but ignore the diversity of captions
Semi-parametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics, or non-linear time series problems, where the system includes a
Event sequences can be modeled by temporal point processes (TPPs) to capture their asynchronous and probabilistic nature. We propose an intensity-free framework that directly models the point process distribution by utilizing normalizing flows. This
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution $q$ over the subsets of a
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain us