ﻻ يوجد ملخص باللغة العربية
Few-magnon excitations in Heisenberg-like models play an important role in understanding magnetism and have long been studied by various approaches. However, the quantum dynamics of magnon excitations in a finite-size spin-$S$ $XXZ$ chain with single-ion anisotropy remains unsolved. Here, we exactly solve the two-magnon (three-magnon) problem in the spin-$S$ $XXZ$ chain by reducing the few-magnons to a fictitious single particle on a one-dimensional (two-dimensional) effective lattice. Such a mapping allows us to obtain both the static and dynamical properties of the model explicitly. The zero-energy-excitation states and various types of multimagnon bound states are manifested, with the latter being interpreted as edge states on the effective lattices. Moreover, we study the real-time multimagnon dynamics by simulating single-particle quantum walks on the effective lattices.
This work is devoted to the investigation of nontrivial transport properties in many-body quantum systems. Precisely, we study transport in the steady state of spin-1/2 Heisenberg XXZ chains, driven out of equilibrium by two magnetic baths with fixed, different magnetization. We take grad
We present a temperature and magnetic field dependence study of spin transport and magnetothermal corrections to the thermal conductivity in the spin S = 1/2 integrable easy-plane regime Heisenberg chain, extending an earlier analysis based on the Be
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where
In spin chains with local unitary evolution preserving the magnetization $S^{rm z}$, the domain-wall state $left| dots uparrow uparrow uparrow uparrow uparrow downarrow downarrow downarrow downarrow downarrow dots right>$ typically melts. At large ti
Using an equations-of-motion method based on analytical representations of spin-operator matrix elements in the XX chain, we obtain exact long-time dynamics of a composite system consisting of a spin-$S$ central spin and an XXZ chain, with the two in