ﻻ يوجد ملخص باللغة العربية
We present a temperature and magnetic field dependence study of spin transport and magnetothermal corrections to the thermal conductivity in the spin S = 1/2 integrable easy-plane regime Heisenberg chain, extending an earlier analysis based on the Bethe ansatz method. We critically discuss the low temperature, weak magnetic field behavior, the effect of magnetothermal corrections in the vicinity of the critical field and their role in recent thermal conductivity experiments in 1D quantum magnets.
Under a perfect periodic potential, the electric current density induced by a constant electric field may exhibit nontrivial oscillations, so-called Bloch oscillations, with an amplitude that remains nonzero in the large system size limit. Such oscil
We employ matrix-product state techniques to numerically study the zero-temperature spin transport in a finite spin-1/2 XXZ chain coupled to fermionic leads with a spin bias voltage. Current-voltage characteristics are calculated for parameters corre
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la
We have investigated the zero and finite temperature behaviors of the anisotropic antiferromagnetic Heisenberg XXZ spin-1/2 chain in the presence of a transverse magnetic field (h). The attention is concentrated on an interval of magnetic field betwe
The purpose of this note is to connect early work on thermal transport in spin-1/2 Heisenberg chains with uniaxial exchange anisotropy and nearest-neighbor interactions that was based on a moment analysis of the Fourier transform of the energy densit