ﻻ يوجد ملخص باللغة العربية
The quantum synchronization based on frequency-correlated photon pairs and HOM interference has shown femtosecond-level precision and great application prospect in numerous fields depending on high-precision timefrequency signals. Due to the difficulty of achieving stable HOM interference fringe after long-distance fiber transmission, this quantum synchronization is hampered from long-haul field application. Utilizing segmented fibers instead of a single long-length fiber, we successfully achieved the stable observation of the two-photon interference of the lab-developed broadband frequency-correlated photon pairs after 20 km-long fiber transmission, without employing auxiliary phase stabilization method. Referenced to this interference fringe, the balance of the two fiber arms is successfully achieved with a long-term stability of 20 fs. The HOM-interference-based synchronization over a 20-km fiber link is thus demonstrated and a minimum stability of 74 fs has been reached at 48,000 s. This result not only provides a simple way to stabilize the fiber-optic two-photon interferometer for long-distance quantum communication systems, but also makes a great stride forward in extending the quantum-interference-based synchronization scheme to the long-haul field applications.
Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of stan
The two-way quantum clock synchronization has been shown not only providing femtosecond-level synchronization capability but also secure against symmetric delay attacks, thus becomes a prospective method to compare and synchronize distant clocks with
We demonstrate a hybrid approach to the generation of photon pairs of a short wavelength with high brightness, by combining parametric down-conversion (SPDC) and up-conversion techniques. Photon pairs were generated at the wavelength of 1550 nm via S
In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnect
Quantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols.