ﻻ يوجد ملخص باللغة العربية
Quantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
High-dimensional quantum states have already settled their advantages in different quantum technology applications. However, their reliable transmission in fiber links remains an open challenge that must be addressed to boost their application, e.g.
The archetypal quantum interferometry experiment yields an interference pattern that results from the indistinguishability of two spatiotemporal paths available to a photon or to a pair of entangled photons. A fundamental challenge in quantum interfe
Quantum Key Distribution (QKD) provides an efficient means to exchange information in an unconditionally secure way. Historically, QKD protocols have been based on binary signal formats, such as two polarisation states, and the transmitted informatio
Quantum information protocols often rely on tomographic techniques to determine the state of the system. A popular method of encoding information is on the different paths a photon may take, for example, parallel waveguides in integrated optics. Howe
Quantum networks are the ultimate target in quantum communication, where many connected users can share information carried by quantum systems. The keystones of such structures are the reliable generation, transmission and manipulation of quantum sta