ﻻ يوجد ملخص باللغة العربية
When completed, the PHANGS-HST project will provide a census of roughly 50,000 compact star clusters and associations, as well as human morphological classifications for roughly 20,000 of those objects. These large numbers motivated the development of a more objective and repeatable method to help perform source classifications. In this paper we consider the results for five PHANGS-HST galaxies (NGC 628, NGC 1433, NGC 1566, NGC 3351, NGC 3627) using classifications from two convolutional neural network architectures (RESNET and VGG) trained using deep transfer learning techniques. The results are compared to classifications performed by humans. The primary result is that the neural network classifications are comparable in quality to the human classifications with typical agreement around 70 to 80$%$ for Class 1 clusters (symmetric, centrally concentrated) and 40 to 70$%$ for Class 2 clusters (asymmetric, centrally concentrated). If Class 1 and 2 are considered together the agreement is 82 $pm$ 3$%$. Dependencies on magnitudes, crowding, and background surface brightness are examined. A detailed description of the criteria and methodology used for the human classifications is included along with an examination of systematic differences between PHANGS-HST and LEGUS. The distribution of data points in a colour-colour diagram is used as a figure of merit to further test the relative performances of the different methods. The effects on science results (e.g., determinations of mass and age functions) of using different cluster classification methods are examined and found to be minimal.
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 M
We present an innovative and widely applicable approach for the detection and classification of stellar clusters, developed for the PHANGS-HST Treasury Program, an $NUV$-to-$I$ band imaging campaign of 38 spiral galaxies. Our pipeline first generates
The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of
Future astrophysical surveys such as J-PAS will produce very large datasets, which will require the deployment of accurate and efficient Machine Learning (ML) methods. In this work, we analyze the miniJPAS survey, which observed about 1 deg2 of the A
We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Sur