ترغب بنشر مسار تعليمي؟ اضغط هنا

The PHANGS-HST Survey: Physics at High Angular resolution in Nearby GalaxieS with the Hubble Space Telescope

89   0   0.0 ( 0 )
 نشر من قبل Janice Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Janice C. Lee




اسأل ChatGPT حول البحث

The PHANGS program is building the first dataset to enable the multi-phase, multi-scale study of star formation across the nearby spiral galaxy population. This effort is enabled by large Treasury programs with ALMA, VLT/MUSE, and HST, with which we have obtained CO(2-1) imaging, optical spectroscopic mapping, and high resolution UV-optical imaging, respectively. Here, we present PHANGS-HST, which is obtaining five band NUV-U-B-V-I imaging of the disks of 38 spiral galaxies at distances of 4-23 Mpc, and parallel V and I band imaging of their halos, to provide a census of tens of thousands of compact star clusters and associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of $sim$100,000 star clusters, associations, HII regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars, across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey, and provide an overview of the HST data processing pipeline and first results, highlighting new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released, which will seed a broad range of community science, in particular, upcoming JWST study of dust embedded star formation and ISM physics.



قيم البحث

اقرأ أيضاً

110 - Joseph C. Shields 2004
We present results from a program of optical spectroscopy for 23 nearby galaxy emission-line nuclei. This investigation takes advantage of the spatial resolution of the Hubble Space Telescope to study the structure and energetics of the central 10 - 20 pc, and the resulting data have value for quantifying central black hole masses, star formation histories, and nebular properties. This paper provides a description of the experimental design, and new findings from the study of emission lines. The sample targets span a range of nebular spectroscopic class, from HII to Seyfert nuclei. The line ratios indicative of nebular ionization show only modest variations over order-of-magnitude differences in radius, and demonstrate in a systematic way that geometrical dilution of the radiation field from a central source cannot be assumed as a primary driver of ionization structure. Comparisons between large- and small-aperture measurements for the HII/LINER transition objects provide a new test that challenges conventional wisdom concerning the composite nature of these systems. We also list a number of other quantitative results that are of interest for understanding galaxy nuclei, including (1) the spatial distribution/degree of concentration of H-alpha emission as a function of nebular type; (2) the radial variation in electron density as a function of nebular type; and (3) quantitative broad H-alpha estimates obtained at a second epoch for these low-luminosity nuclei. The resulting measurements provide a new basis for comparing the nuclei of other galaxies with that of the Milky Way. We find that the Galactic Center is representative across a wide span of properties as a low-luminosity emission-line nucleus.
We present an innovative and widely applicable approach for the detection and classification of stellar clusters, developed for the PHANGS-HST Treasury Program, an $NUV$-to-$I$ band imaging campaign of 38 spiral galaxies. Our pipeline first generates a unified master source list for stars and candidate clusters, to enable a self-consistent inventory of all star formation products. To distinguish cluster candidates from stars, we introduce the Multiple Concentration Index (MCI) parameter, and measure inner and outer MCIs to probe morphology in more detail than with a single, standard concentration index (CI). We improve upon cluster candidate selection, jointly basing our criteria on expectations for MCI derived from synthetic cluster populations and published cluster catalogues, yielding model and empirical selection regions (respectively). Selection purity (confirmed clusters versus candidates, assessed via human-based classification) is high (up to 70%) for moderately luminous sources in the empirical selection region, and somewhat lower overall (outside the region or fainter). The number of candidates rises steeply with decreasing luminosity, but pipeline-integrated Machine Learning (ML) classification prevents this from being problematic. We quantify the performance of our PHANGS-HST methods in comparison to LEGUS for a sample of four galaxies in common to both surveys, finding overall agreement with 50-75% of human verified star clusters appearing in both catalogues, but also subtle differences attributable to specific choices adopted by each project. The PHANGS-HST ML-classified Class 1 or 2 catalogues reach $sim1$ magnitude fainter, $sim2times$ lower stellar mass, and are $2{-}5times$ larger in number, than attained in the human classified samples.
We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the Fine Guidance Sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitud e difference delta-V < 4 down to separations as small as 0.01 arcsec. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 - 20,000 years. When combined with the known short-period spectroscopic binaries, the results supports the hypothesis that the binary fraction among massive stars is > 60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.
We present Hubble Space Telescope (HST) WFC3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass with the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ~ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution (SED) fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ~30% of SLSNe-II arising from galaxies fainter than Mn I R ~ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.
We present $U_{336}V_{606}J_{125}H_{160}$ follow-up $HST$ observations of 16 $zsim3$ candidate LyC emitters in the HS1549+1919 field. With these data, we obtain high spatial-resolution photometric redshifts of all sub-arcsecond components of the LyC candidates in order to eliminate foreground contamination and identify robust candidates for leaking LyC emission. Of the 16 candidates, we find one object with a robust LyC detection that is not due to foreground contamination. This object (MD5) resolves into two components; we refer to the LyC-emitting component as MD5b. MD5b has an observed 1500AA to 900AA flux-density ratio of $(F_{UV}/F_{LyC})_{obs}=4.0pm2.0$, compatible with predictions from stellar population synthesis models. Assuming minimal IGM absorption, this ratio corresponds to a relative (absolute) escape fraction of $f_{esc,rel}^{MD5b}=75-100$% ($f_{esc,abs}^{MD5b}=14-19$%). The stellar population fit to MD5b indicates an age of $lesssim50$Myr, which is in the youngest 10% of the $HST$ sample and the youngest third of typical $zsim3$ Lyman break galaxies, and may be a contributing factor to its LyC detection. We obtain a revised, contamination-free estimate for the comoving specific ionizing emissivity at $z=2.85$, indicating (with large uncertainties) that star-forming galaxies provide roughly the same contribution as QSOs to the ionizing background at this redshift. Our results show that foreground contamination prevents ground-based LyC studies from obtaining a full understanding of LyC emission from $zsim3$ star-forming galaxies. Future progress in direct LyC searches is contingent upon the elimination of foreground contaminants through high spatial-resolution observations, and upon acquisition of sufficiently deep LyC imaging to probe ionizing radiation in high-redshift galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا