ﻻ يوجد ملخص باللغة العربية
Imbalanced datasets widely exist in practice and area great challenge for training deep neural models with agood generalization on infrequent classes. In this work, wepropose a new rare-class sample generator (RSG) to solvethis problem. RSG aims to generate some new samplesfor rare classes during training, and it has in particularthe following advantages: (1) it is convenient to use andhighly versatile, because it can be easily integrated intoany kind of convolutional neural network, and it works wellwhen combined with different loss functions, and (2) it isonly used during the training phase, and therefore, no ad-ditional burden is imposed on deep neural networks duringthe testing phase. In extensive experimental evaluations, weverify the effectiveness of RSG. Furthermore, by leveragingRSG, we obtain competitive results on Imbalanced CIFARand new state-of-the-art results on Places-LT, ImageNet-LT, and iNaturalist 2018. The source code is available at https://github.com/Jianf-Wang/RSG.
Deep learning models are notoriously data-hungry. Thus, there is an urging need for data-efficient techniques in medical image analysis, where well-annotated data are costly and time consuming to collect. Motivated by the recently revived Copy-Paste
Many optimization methods for generating black-box adversarial examples have been proposed, but the aspect of initializing said optimizers has not been considered in much detail. We show that the choice of starting points is indeed crucial, and that
Zero-Shot Learning (ZSL) is a classification task where we do not have even a single training labeled example from a set of unseen classes. Instead, we only have prior information (or description) about seen and unseen classes, often in the form of p
In this paper, we tackle a fully unsupervised super-resolution problem, i.e., neither paired images nor ground truth HR images. We assume that low resolution (LR) images are relatively easy to collect compared to high resolution (HR) images. By allow
Rating prediction is a core problem in recommender systems to quantify users preferences towards different items. Due to the imbalanced rating distributions in training data, existing recommendation methods suffer from the biased prediction problem t