ﻻ يوجد ملخص باللغة العربية
Rating prediction is a core problem in recommender systems to quantify users preferences towards different items. Due to the imbalanced rating distributions in training data, existing recommendation methods suffer from the biased prediction problem that generates biased prediction results. Thus, their performance on predicting ratings which rarely appear in training data is unsatisfactory. In this paper, inspired by the superior capability of Extreme Value Distribution (EVD)-based methods in modeling the distribution of rare data, we propose a novel underline{emph{G}}umbel Distribution-based underline{emph{R}}ating underline{emph{P}}rediction framework (GRP) which can accurately predict both frequent and rare ratings between users and items. In our approach, we first define different Gumbel distributions for each rating level, which can be learned by historical rating statistics of users and items. Second, we incorporate the Gumbel-based representations of users and items with their original representations learned from the rating matrix and/or reviews to enrich the representations of users and items via a proposed multi-scale convolutional fusion layer. Third, we propose a data-driven rating prediction module to predict the ratings of user-item pairs. Its worthy to note that our approach can be readily applied to existing recommendation methods for addressing their biased prediction problem. To verify the effectiveness of GRP, we conduct extensive experiments on eight benchmark datasets. Compared with several baseline models, the results show that: 1) GRP achieves state-of-the-art overall performance on all eight datasets; 2) GRP makes a substantial improvement in predicting rare ratings, which shows the effectiveness of our model in addressing the bias prediction problem.
The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minority class, leading to misclassifications for the majority class, and effecting t
For many real-world classification problems, e.g., sentiment classification, most existing machine learning methods are biased towards the majority class when the Imbalance Ratio (IR) is high. To address this problem, we propose a set convolution (Se
Over 85 oversampling algorithms, mostly extensions of the SMOTE algorithm, have been built over the past two decades, to solve the problem of imbalanced datasets. However, it has been evident from previous studies that different oversampling algorith
Imbalanced datasets widely exist in practice and area great challenge for training deep neural models with agood generalization on infrequent classes. In this work, wepropose a new rare-class sample generator (RSG) to solvethis problem. RSG aims to g
In recent years, benefiting from the expressive power of Graph Convolutional Networks (GCNs), significant breakthroughs have been made in face clustering. However, rare attention has been paid to GCN-based clustering on imbalanced data. Although imba