ﻻ يوجد ملخص باللغة العربية
Deep learning models are notoriously data-hungry. Thus, there is an urging need for data-efficient techniques in medical image analysis, where well-annotated data are costly and time consuming to collect. Motivated by the recently revived Copy-Paste augmentation, we propose TumorCP, a simple but effective object-level data augmentation method tailored for tumor segmentation. TumorCP is online and stochastic, providing unlimited augmentation possibilities for tumors subjects, locations, appearances, as well as morphologies. Experiments on kidney tumor segmentation task demonstrate that TumorCP surpasses the strong baseline by a remarkable margin of 7.12% on tumor Dice. Moreover, together with image-level data augmentation, it beats the current state-of-the-art by 2.32% on tumor Dice. Comprehensive ablation studies are performed to validate the effectiveness of TumorCP. Meanwhile, we show that TumorCP can lead to striking improvements in extremely low-data regimes. Evaluated with only 10% labeled data, TumorCP significantly boosts tumor Dice by 21.87%. To the best of our knowledge, this is the very first work exploring and extending the Copy-Paste design in medical imaging domain. Code is available at: https://github.com/YaoZhang93/TumorCP.
Semantic image segmentation aims to obtain object labels with precise boundaries, which usually suffers from overfitting. Recently, various data augmentation strategies like regional dropout and mix strategies have been proposed to address the proble
Building instance segmentation models that are data-efficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perfo
Recently, significant progress has been made on semantic segmentation. However, the success of supervised semantic segmentation typically relies on a large amount of labelled data, which is time-consuming and costly to obtain. Inspired by the success
Imbalanced datasets widely exist in practice and area great challenge for training deep neural models with agood generalization on infrequent classes. In this work, wepropose a new rare-class sample generator (RSG) to solvethis problem. RSG aims to g
Brain lesion segmentation provides a valuable tool for clinical diagnosis, and convolutional neural networks (CNNs) have achieved unprecedented success in the task. Data augmentation is a widely used strategy that improves the training of CNNs, and t