ﻻ يوجد ملخص باللغة العربية
In this paper, we tackle a fully unsupervised super-resolution problem, i.e., neither paired images nor ground truth HR images. We assume that low resolution (LR) images are relatively easy to collect compared to high resolution (HR) images. By allowing multiple LR images, we build a set of pseudo pairs by denoising and downsampling LR images and cast the original unsupervised problem into a supervised learning problem but in one level lower. Though this line of study is easy to think of and thus should have been investigated prior to any complicated unsupervised methods, surprisingly, there are currently none. Even more, we show that this simple method outperforms the state-of-the-art unsupervised method with a dramatically shorter latency at runtime, and significantly reduces the gap to the HR supervised models. We submitted our method in NTIRE 2020 super-resolution challenge and won 1st in PSNR, 2nd in SSIM, and 13th in LPIPS. This simple method should be used as the baseline to beat in the future, especially when multiple LR images are allowed during the training phase. However, even in the zero-shot condition, we argue that this method can serve as a useful baseline to see the gap between supervised and unsupervised frameworks.
While the researches on single image super-resolution (SISR), especially equipped with deep neural networks (DNNs), have achieved tremendous successes recently, they still suffer from two major limitations. Firstly, the real image degradation is usua
Recently, satellites with high temporal resolution have fostered wide attention in various practical applications. Due to limitations of bandwidth and hardware cost, however, the spatial resolution of such satellites is considerably low, largely limi
Texts appearing in daily scenes that can be recognized by OCR (Optical Character Recognition) tools contain significant information, such as street name, product brand and prices. Two tasks -- text-based visual question answering and text-based image
We consider the single image super-resolution problem in a more general case that the low-/high-resolution pairs and the down-sampling process are unavailable. Different from traditional super-resolution formulation, the low-resolution input is furth
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. However, customized architectures g