ﻻ يوجد ملخص باللغة العربية
The ubiquitous Lanczos method can approximate $f(A)x$ for any symmetric $n times n$ matrix $A$, vector $x$, and function $f$. In exact arithmetic, the methods error after $k$ iterations is bounded by the error of the best degree-$k$ polynomial uniformly approximating $f(x)$ on the range $[lambda_{min}(A), lambda_{max}(A)]$. However, despite decades of work, it has been unclear if this powerful guarantee holds in finite precision. We resolve this problem, proving that when $max_{x in [lambda_{min}, lambda_{max}]}|f(x)| le C$, Lanczos essentially matches the exact arithmetic guarantee if computations use roughly $log(nC|A|)$ bits of precision. Our proof extends work of Druskin and Knizhnerman [DK91], leveraging the stability of the classic Chebyshev recurrence to bound the stability of any polynomial approximating $f(x)$. We also study the special case of $f(A) = A^{-1}$, where stronger guarantees hold. In exact arithmetic Lanczos performs as well as the best polynomial approximating $1/x$ at each of $A$s eigenvalues, rather than on the full eigenvalue range. In seminal work, Greenbaum gives an approach to extending this bound to finite precision: she proves that finite precision Lanczos and the related CG method match any polynomial approximating $1/x$ in a tiny range around each eigenvalue [Gre89]. For $A^{-1}$, this bound appears stronger than ours. However, we exhibit matrices with condition number $kappa$ where exact arithmetic Lanczos converges in $polylog(kappa)$ iterations, but Greenbaums bound predicts $Omega(kappa^{1/5})$ iterations. It thus cannot offer significant improvement over the $O(kappa^{1/2})$ bound achievable via our result. Our analysis raises the question of if convergence in less than $poly(kappa)$ iterations can be expected in finite precision, even for matrices with clustered, skewed, or otherwise favorable eigenvalue distributions.
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ
We develop a version of Haar and Holmgren methods which applies to discontinuous solutions of nonlinear hyperbolic systems and allows us to control the L1 distance between two entropy solutions. The main difficulty is to cope with linear hyperbolic s
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t
In the non-negative matrix factorization (NMF) problem, the input is an $mtimes n$ matrix $M$ with non-negative entries and the goal is to factorize it as $Mapprox AW$. The $mtimes k$ matrix $A$ and the $ktimes n$ matrix $W$ are both constrained to h
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim