ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Unreliable Predictions by Shattering a Neural Network

345   0   0.0 ( 0 )
 نشر من قبل Xu Ji
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Piecewise linear neural networks can be split into subfunctions, each with its own activation pattern, domain, and empirical error. Empirical error for the full network can be written as an expectation over empirical error of subfunctions. Constructing a generalization bound on subfunction empirical error indicates that the more densely a subfunction is surrounded by training samples in representation space, the more reliable its predictions are. Further, it suggests that models with fewer activation regions generalize better, and models that abstract knowledge to a greater degree generalize better, all else equal. We propose not only a theoretical framework to reason about subfunction error bounds but also a pragmatic way of approximately evaluating it, which we apply to predicting which samples the network will not successfully generalize to. We test our method on detection of misclassification and out-of-distribution samples, finding that it performs competitively in both cases. In short, some network activation patterns are associated with higher reliability than others, and these can be identified using subfunction error bounds.



قيم البحث

اقرأ أيضاً

The field of Deep Learning is rich with empirical evidence of human-like performance on a variety of prediction tasks. However, despite these successes, the recent Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition suggests th at there is a need for more robust and efficient measures of network generalization. In this work, we propose a new framework for evaluating the generalization capabilities of trained networks. We use perturbation response (PR) curves that capture the accuracy change of a given network as a function of varying levels of training sample perturbation. From these PR curves, we derive novel statistics that capture generalization capability. Specifically, we introduce two new measures for accurately predicting generalization gaps: the Gi-score and Pal-score, that are inspired by the Gini coefficient and Palma ratio (measures of income inequality), that accurately predict generalization gaps. Using our framework applied to intra and inter class sample mixup, we attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the PGDL competition. In addition, we show that our framework and the proposed statistics can be used to capture to what extent a trained network is invariant to a given parametric input transformation, such as rotation or translation. Therefore, these generalization gap prediction statistics also provide a useful means for selecting the optimal network architectures and hyperparameters that are invariant to a certain perturbation.
As a vast number of ingredients exist in the culinary world, there are countless food ingredient pairings, but only a small number of pairings have been adopted by chefs and studied by food researchers. In this work, we propose KitcheNette which is a model that predicts food ingredient pairing scores and recommends optimal ingredient pairings. KitcheNette employs Siamese neural networks and is trained on our annotated dataset containing 300K scores of pairings generated from numerous ingredients in food recipes. As the results demonstrate, our model not only outperforms other baseline models but also can recommend complementary food pairings and discover novel ingredient pairings.
To facilitate a wide-spread acceptance of AI systems guiding decision making in real-world applications, trustworthiness of deployed models is key. That is, it is crucial for predictive models to be uncertainty-aware and yield well-calibrated (and th us trustworthy) predictions for both in-domain samples as well as under domain shift. Recent efforts to account for predictive uncertainty include post-processing steps for trained neural networks, Bayesian neural networks as well as alternative non-Bayesian approaches such as ensemble approaches and evidential deep learning. Here, we propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift. We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions for a wide range of domain drifts. We comprehensively evaluate previously proposed approaches on different data modalities, a large range of data sets including sequence data, network architectures and perturbation strategies. We observe that our modelling approach substantially outperforms existing state-of-the-art approaches, yielding well-calibrated predictions under domain drift.
This work views neural networks as data generating systems and applies anomalous pattern detection techniques on that data in order to detect when a network is processing an anomalous input. Detecting anomalies is a critical component for multiple ma chine learning problems including detecting adversarial noise. More broadly, this work is a step towards giving neural networks the ability to recognize an out-of-distribution sample. This is the first work to introduce Subset Scanning methods from the anomalous pattern detection domain to the task of detecting anomalous input of neural networks. Subset scanning treats the detection problem as a search for the most anomalous subset of node activations (i.e., highest scoring subset according to non-parametric scan statistics). Mathematical properties of these scoring functions allow the search to be completed in log-linear rather than exponential time while still guaranteeing the most anomalous subset of nodes in the network is identified for a given input. Quantitative results for detecting and characterizing adversarial noise are provided for CIFAR-10 images on a simple convolutional neural network. We observe an interference pattern where anomalous activations in shallow layers suppress the activation structure of the original image in deeper layers.
Deep Neural Networks (DNNs) have become increasingly popular in computer vision, natural language processing, and other areas. However, training and fine-tuning a deep learning model is computationally intensive and time-consuming. We propose a new m ethod to improve the performance of nearly every model including pre-trained models. The proposed method uses an ensemble approach where the networks in the ensemble are constructed by reassigning model parameter values based on the probabilistic distribution of these parameters, calculated towards the end of the training process. For pre-trained models, this approach results in an additional training step (usually less than one epoch). We perform a variety of analysis using the MNIST dataset and validate the approach with a number of DNN models using pre-trained models on the ImageNet dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا