ﻻ يوجد ملخص باللغة العربية
To facilitate a wide-spread acceptance of AI systems guiding decision making in real-world applications, trustworthiness of deployed models is key. That is, it is crucial for predictive models to be uncertainty-aware and yield well-calibrated (and thus trustworthy) predictions for both in-domain samples as well as under domain shift. Recent efforts to account for predictive uncertainty include post-processing steps for trained neural networks, Bayesian neural networks as well as alternative non-Bayesian approaches such as ensemble approaches and evidential deep learning. Here, we propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift. We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions for a wide range of domain drifts. We comprehensively evaluate previously proposed approaches on different data modalities, a large range of data sets including sequence data, network architectures and perturbation strategies. We observe that our modelling approach substantially outperforms existing state-of-the-art approaches, yielding well-calibrated predictions under domain drift.
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical r
We introduce Deep Reasoning Networks (DRNets), an end-to-end framework that combines deep learning with reasoning for solving complex tasks, typically in an unsupervised or weakly-supervised setting. DRNets exploit problem structure and prior knowled
Graph neural networks (GNNs) have achieved high performance in analyzing graph-structured data and have been widely deployed in safety-critical areas, such as finance and autonomous driving. However, only a few works have explored GNNs robustness to
Safety concerns on the deep neural networks (DNNs) have been raised when they are applied to critical sectors. In this paper, we define safety risks by requesting the alignment of the networks decision with human perception. To enable a general metho
Optimal decision making requires that classifiers produce uncertainty estimates consistent with their empirical accuracy. However, deep neural networks are often under- or over-confident in their predictions. Consequently, methods have been developed