ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold collision shift cancelation and inelastic scattering in a Yb optical lattice clock

217   0   0.0 ( 0 )
 نشر من قبل Andrew Ludlow
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold collision shift is canceled below the 5x10^{-18} fractional frequency level. We report inelastic two-body loss rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for high performance optical clocks as well as strongly-interacting systems for quantum information and quantum simulation applications.



قيم البحث

اقرأ أيضاً

We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
Optical frequency comparison of the 40Ca+ clock transition u_{Ca} (2S1/2-2D5/2, 729nm) against the 87Sr optical lattice clock transition u_{Sr}(1S0-3P0, 698nm) has resulted in a frequency ratio u_{Ca} / u_{Sr} = 0.957 631 202 358 049 9(2 3). The rapid nature of optical comparison allowed the statistical uncertainty of frequency ratio u_{Ca} / u_{Sr} to reach 1x10-15 in only 1000s and yielded a value consistent with that calculated from separate absolute frequency measurements of u_{Ca} using the International Atomic Time (TAI) link. The total uncertainty of the frequency ratio using optical comparison (free from microwave link uncertainties) is smaller than that obtained using absolute frequency measurement, demonstrating the advantage of optical frequency evaluation. We report the absolute frequency of ^{40}Ca+ with a systematic uncertainty 14 times smaller than our previous measurement [1].
Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with dead time required for quantum state preparation and readout. Thi s non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise of the laser interrogating the atomic transition. Despite recent advances in optical clock stability achieved by improving laser coherence, the Dick effect has continually limited optical clock performance. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability of $6 times 10^{-17} / sqrt{tau}$ for an averaging time $tau$ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor $Q> 4 times 10^{15}$.
Experiments involving optical traps often require careful control of the ac Stark shifts induced by strong confining light fields. By carefully balancing light shifts between two atomic states of interest, optical traps at the magic wavelength have b een especially effective at suppressing deleterious effects stemming from such shifts. Highlighting the power of this technique, optical clocks today exploit Lamb-Dicke confinement in magic-wavelength optical traps, in some cases realizing shift cancellation at the ten parts per billion level. Theory and empirical measurements can be used at varying levels of precision to determine the magic wavelength where shift cancellation occurs. However, lasers exhibit background spectra from amplified spontaneous emission or other lasing modes which can easily contaminate measurement of the magic wavelength and its reproducibility in other experiments or conditions. Indeed, residual light shifts from laser background have plagued optical lattice clock measurements for years. In this work, we develop a simple theoretical model allowing prediction of light shifts from measured background spectra. We demonstrate good agreement between this model and measurements of the background light shift from an amplified diode laser in an Yb optical lattice clock. Additionally, we model and experimentally characterize the filtering effect of a volume Bragg grating bandpass filter, demonstrating that application of the filter can reduce background light shifts from amplified spontaneous emission well below the $10^{-18}$ fractional clock frequency level. This demonstration is corroborated by direct clock comparisons between a filtered amplified diode laser and a filtered titanium:sapphire laser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا