ﻻ يوجد ملخص باللغة العربية
We describe various errors in the mathematical literature, and consider how some of them might have been avoided, or at least detected at an earlier stage, using tools such as Maple or Sage. Our examples are drawn from three broad categories of errors. First, we consider some significant errors made by highly-regarded mathematicians. In some cases these errors were not detected until many years after their publication. Second, we consider in some detail an error that was recently detected by the author. This error in a refereed journal led to further errors by at least one author who relied on the (incorrect) result. Finally, we mention some instructive errors that have been detected in the authors own published papers.
In this short note we prove two elegant generalized continued fraction formulae $$e= 2+cfrac{1}{1+cfrac{1}{2+cfrac{2}{3+cfrac{3}{4+ddots}}}}$$ and $$e= 3+cfrac{-1}{4+cfrac{-2}{5+cfrac{-3}{6+cfrac{-4}{7+ddots}}}}$$ using elementary methods. The first
We consider some of Jonathan and Peter Borweins contributions to the high-precision computation of $pi$ and the elementary functions, with particular reference to their book Pi and the AGM (Wiley, 1987). Here AGM is the arithmetic-geometric mean of G
Negative index materials are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 and were confirmed experimentally by Shelby,
The main goal of numerical relativity is the long time simulation of highly nonlinear spacetimes that cannot be treated by perturbation theory. This involves analytic, computational and physical issues. At present, the major impasses to achieving glo
We develop a regularization for Petersson inner products of arbitrary weakly holomorphic modular forms, generalizing several known regularizations. As one application, we extend work of Duke, Imamoglu, and Toth on regularized inner products of weakly