ﻻ يوجد ملخص باللغة العربية
We develop a regularization for Petersson inner products of arbitrary weakly holomorphic modular forms, generalizing several known regularizations. As one application, we extend work of Duke, Imamoglu, and Toth on regularized inner products of weakly holomorphic modular forms of weights $0$ and $3/2$. These regularized inner products can be evaluated in terms of the coefficients of holomorphic parts of harmonic Maass forms of dual weights. Moreover, we study the errors of modularity of the holomorphic parts of such a harmonic Maass forms and show that they induce cocyles in the first parabolic cohomology group introduced by Bruggeman, Choie, and the second author. This provides explicit representatives of the cohomology classes constructed abstractly and in a very general setting in their work.
We give an effective proof of Faltings theorem for curves mapping to Hilbert modular stacks over odd-degree totally real fields. We do this by giving an effective proof of the Shafarevich conjecture for abelian varieties of $mathrm{GL}_2$-type over a
We show that the tensor product of two cyclic $A_infty$-algebras is, in general, not a cyclic $A_infty$-algebra, but an $A_infty$-algebra with homotopy inner product. More precisely, we construct an explicit combinatorial diagonal on the pairahedra,
Let $varphi: {mathbb P}^1 longrightarrow {mathbb P}^1$ be a rational map of degree greater than one defined over a number field $k$. For each prime ${mathfrak p}$ of good reduction for $varphi$, we let $varphi_{mathfrak p}$ denote the reduction of $v
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $pequiv5pmod8$, then $$prod_{0<x<p/2,(frac{x}{p})=1}xequiv(-1)^{1+
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe