ﻻ يوجد ملخص باللغة العربية
We consider some of Jonathan and Peter Borweins contributions to the high-precision computation of $pi$ and the elementary functions, with particular reference to their book Pi and the AGM (Wiley, 1987). Here AGM is the arithmetic-geometric mean of Gauss and Legendre. Because the AGM converges quadratically, it can be combined with fast multiplication algorithms to give fast algorithms for the $n$-bit computation of $pi$, and more generally the elementary functions. These algorithms run in almost linear time $O(M(n)log n)$, where $M(n)$ is the time for $n$-bit multiplication. We outline some of the results and algorithms given in Pi and the AGM, and present some related (but new) results. In particular, we improve the published error bounds for some quadratically and quartically convergent algorithms for $pi$, such as the Gauss-Legendre algorithm. We show that an iteration of the Borwein-Borwein quartic algorithm for $pi$ is equivalent to two iterations of the Gauss-Legendre quadratic algorithm for $pi$, in the sense that they produce exactly the same sequence of approximations to $pi$ if performed using exact arithmetic.
In this paper, we study properties of the coefficients appearing in the $q$-series expansion of $prod_{nge 1}[(1-q^n)/(1-q^{pn})]^delta$, the infinite Borwein product for an arbitrary prime $p$, raised to an arbitrary positive real power $delta$. We
We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymp
In this short note we prove two elegant generalized continued fraction formulae $$e= 2+cfrac{1}{1+cfrac{1}{2+cfrac{2}{3+cfrac{3}{4+ddots}}}}$$ and $$e= 3+cfrac{-1}{4+cfrac{-2}{5+cfrac{-3}{6+cfrac{-4}{7+ddots}}}}$$ using elementary methods. The first
We describe various errors in the mathematical literature, and consider how some of them might have been avoided, or at least detected at an earlier stage, using tools such as Maple or Sage. Our examples are drawn from three broad categories of error
I argue that European schools of thought on memory and memorization were critical in enabling the growth of the scientific method. After giving a historical overview of the development of the memory arts from ancient Greece through 17th century Europ