ﻻ يوجد ملخص باللغة العربية
Negative index materials are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 and were confirmed experimentally by Shelby, Smith, and Schultz in 2001. New fabrication techniques now allow for the construction of negative index materials at scales that are interesting for applications, which has made them a very active topic of investigation. In this paper, we report various mathematical results on the properties of negative index materials and their applications. The topics discussed herein include superlensing using complementary media, cloaking using complementary media, cloaking an object via anomalous localized resonance, and the well-posedness and the finite speed propagation in media consisting of dispersive metamaterials. Some of the results have been refined and have simpler proofs than the original ones.
Starting from the construction of the free quantum scalar field of mass $mgeq 0$ we give mathematically precise and rigoro
The Boussinesq equations are known since the end of the XIXst century. However, the proliferation of various textsc{Boussinesq}-type systems started only in the second half of the XXst century. Today they come under various flavours depending on the
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic
In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related
In this paper, we begin by reviewing a certain number of mathematical challenges posed by the modelling of collective dynamics and self-organization. Then, we focus on two specific problems, first, the derivation of fluid equations from particle dyna