ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal detection of the feature matching map in presence of noise and outliers

43   0   0.0 ( 0 )
 نشر من قبل Arnak Dalalyan S.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of finding the matching map between two sets of $d$ dimensional vectors from noisy observations, where the second set contains outliers. The matching map is then an injection, which can be consistently estimated only if the vectors of the second set are well separated. The main result shows that, in the high-dimensional setting, a detection region of unknown injection can be characterized by the sets of vectors for which the inlier-inlier distance is of order at least $d^{1/4}$ and the inlier-outlier distance is of order at least $d^{1/2}$. These rates are achieved using the estimated matching minimizing the sum of logarithms of distances between matched pairs of points. We also prove lower bounds establishing optimality of these rates. Finally, we report results of numerical experiments on both synthetic and real world data that illustrate our theoretical results and provide further insight into the properties of the estimators studied in this work.


قيم البحث

اقرأ أيضاً

We derive a formula for optimal hard thresholding of the singular value decomposition in the presence of correlated additive noise; although it nominally involves unobservables, we show how to apply it even where the noise covariance structure is not a-priori known or is not independently estimable. The proposed method, which we call ScreeNOT, is a mathematically solid alternative to Cattells ever-popular but vague Scree Plot heuristic from 1966. ScreeNOT has a surprising oracle property: it typically achieves exactly, in large finite samples, the lowest possible MSE for matrix recovery, on each given problem instance - i.e. the specific threshold it selects gives exactly the smallest achievable MSE loss among all possible threshold choices for that noisy dataset and that unknown underlying true low rank model. The method is computationally efficient and robust against perturbations of the underlying covariance structure. Our results depend on the assumption that the singular values of the noise have a limiting empirical distribution of compact support; this model, which is standard in random matrix theory, is satisfied by many models exhibiting either cross-row correlation structure or cross-column correlation structure, and also by many situations where there is inter-element correlation structure. Simulations demonstrate the effectiveness of the method even at moderate matrix sizes. The paper is supplemented by ready-to-use software packages implementing the proposed algorithm.
We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time an d the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions. We then establish cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
123 - Yihong Wu , Pengkun Yang 2015
We consider the problem of estimating the support size of a discrete distribution whose minimum non-zero mass is at least $ frac{1}{k}$. Under the independent sampling model, we show that the sample complexity, i.e., the minimal sample size to achiev e an additive error of $epsilon k$ with probability at least 0.1 is within universal constant factors of $ frac{k}{log k}log^2frac{1}{epsilon} $, which improves the state-of-the-art result of $ frac{k}{epsilon^2 log k} $ in cite{VV13}. Similar characterization of the minimax risk is also obtained. Our procedure is a linear estimator based on the Chebyshev polynomial and its approximation-theoretic properties, which can be evaluated in $O(n+log^2 k)$ time and attains the sample complexity within a factor of six asymptotically. The superiority of the proposed estimator in terms of accuracy, computational efficiency and scalability is demonstrated in a variety of synthetic and real datasets.
In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange protocols, by introducing and formalizing the building tool, referred to as key consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicat ing parties to reach consensus from close values obtained by some secure information exchange. We then discover upper bounds on parameters for any KC and AKC. KC and AKC are fundamental to lattice based cryptography, in the sense that a list of cryptographic primitives based on LWR, LWE and RLWE (including key exchange, public-key encryption, and more) can be modularly constructed from them. As a conceptual contribution, this much simplifies the design and analysis of these cryptosystems in the future. We then design and analyze both general and highly practical KC and AKC schemes, which are referred to as OKCN and AKCN respectively for presentation simplicity. Based on KC and AKC, we present generic constructions of key exchange (KE) from LWR, LWE and RLWE. The generic construction allows versatile instantiations with our OKCN and AKCN schemes, for which we elaborate on evaluating and choosing the concrete parameters in order to achieve an optimally-balanced performance among security, computational cost, bandwidth efficiency, error rate, and operation simplicity.
Matching methods are widely used for causal inference in observational studies. Among them, nearest neighbor matching is arguably the most popular. However, nearest neighbor matching does not generally yield an average treatment effect estimator that is $sqrt{n}$-consistent (Abadie and Imbens, 2006). Are matching methods not $sqrt{n}$-consistent in general? In this paper, we study a recent class of matching methods that use integer programming to directly target aggregate covariate balance as opposed to finding close neighbor matches. We show that under suitable conditions these methods can yield simple estimators that are $sqrt{n}$-consistent and asymptotically optimal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا