ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Sample Properties of Matching for Balance

343   0   0.0 ( 0 )
 نشر من قبل Yixin Wang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Matching methods are widely used for causal inference in observational studies. Among them, nearest neighbor matching is arguably the most popular. However, nearest neighbor matching does not generally yield an average treatment effect estimator that is $sqrt{n}$-consistent (Abadie and Imbens, 2006). Are matching methods not $sqrt{n}$-consistent in general? In this paper, we study a recent class of matching methods that use integer programming to directly target aggregate covariate balance as opposed to finding close neighbor matches. We show that under suitable conditions these methods can yield simple estimators that are $sqrt{n}$-consistent and asymptotically optimal.



قيم البحث

اقرأ أيضاً

The Bayesian probit regression model (Albert and Chib (1993)) is popular and widely used for binary regression. While the improper flat prior for the regression coefficients is an appropriate choice in the absence of any prior information, a proper n ormal prior is desirable when prior information is available or in modern high dimensional settings where the number of coefficients ($p$) is greater than the sample size ($n$). For both choices of priors, the resulting posterior density is intractable and a Data Dugmentation (DA) Markov chain is used to generate approximate samples from the posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for constructing standard errors for Markov chain based estimates of posterior quantities. In this paper, we first show that in case of proper normal priors, the DA Markov chain is geometrically ergodic *for all* choices of the design matrix $X$, $n$ and $p$ (unlike the improper prior case, where $n geq p$ and another condition on $X$ are required for posterior propriety itself). We also derive sufficient conditions under which the DA Markov chain is trace-class, i.e., the eigenvalues of the corresponding operator are summable. In particular, this allows us to conclude that the Haar PX-DA sandwich algorithm (obtained by inserting an inexpensive extra step in between the two steps of the DA algorithm) is strictly better than the DA algorithm in an appropriate sense.
We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use M onte Carlo simulations to compare the finite-sample performance of the different tests. Our simulations suggest that the signed likelihood ratio test tends to be liberal when the sample size is not large, and that the adjustments are effective in shrinking the size distortion. Two real data applications are presented and discussed.
89 - Yu Liu , Zhao Ren 2017
Last decade witnesses significant methodological and theoretical advances in estimating large precision matrices. In particular, there are scientific applications such as longitudinal data, meteorology and spectroscopy in which the ordering of the va riables can be interpreted through a bandable structure on the Cholesky factor of the precision matrix. However, the minimax theory has still been largely unknown, as opposed to the well established minimax results over the corresponding bandable covariance matrices. In this paper, we focus on two commonly used types of parameter spaces, and develop the optimal rates of convergence under both the operator norm and the Frobenius norm. A striking phenomenon is found: two types of parameter spaces are fundamentally different under the operator norm but enjoy the same rate optimality under the Frobenius norm, which is in sharp contrast to the equivalence of corresponding two types of bandable covariance matrices under both norms. This fundamental difference is established by carefully constructing the corresponding minimax lower bounds. Two new estimation procedures are developed: for the operator norm, our optimal procedure is based on a novel local cropping estimator targeting on all principle submatrices of the precision matrix while for the Frobenius norm, our optimal procedure relies on a delicate regression-based thresholding rule. Lepskis method is considered to achieve optimal adaptation. We further establish rate optimality in the nonparanormal model. Numerical studies are carried out to confirm our theoretical findings.
Simultaneous, post-hoc inference is desirable in large-scale hypotheses testing as it allows for exploration of data while deciding on criteria for proclaiming discoveries. It was recently proved that all admissible post-hoc inference methods for the number of true discoveries must be based on closed testing. In this paper we investigate tractable and efficient closed testing with local tests of different properties, such as monotonicty, symmetry and separability, meaning that the test thresholds a monotonic or symmetric function or a function of sums of test scores for the individual hypotheses. This class includes well-known global null tests by Fisher, Stouffer and Ruschendorf, as well as newly proposed ones based on harmonic means and Cauchy combinations. Under monotonicity, we propose a new linear time statistic (coma) that quantifies the cost of multiplicity adjustments. If the tests are also symmetric and separable, we develop several fast (mostly linear-time) algorithms for post-hoc inference, making closed testing tractable. Paired with recent advances in global null tests based on generalized means, our work immediately instantiates a series of simultaneous inference methods that can handle many complex dependence structures and signal compositions. We provide guidance on choosing from these methods via theoretical investigation of the conservativeness and sensitivity for different local tests, as well as simulations that find analogous behavior for local tests and full closed testing. One result of independent interest is the following: if $P_1,dots,P_d$ are $p$-values from a multivariate Gaussian with arbitrary covariance, then their arithmetic average P satisfies $Pr(P leq t) leq t$ for $t leq frac{1}{2d}$.
Several novel statistical methods have been developed to estimate large integrated volatility matrices based on high-frequency financial data. To investigate their asymptotic behaviors, they require a sub-Gaussian or finite high-order moment assumpti on for observed log-returns, which cannot account for the heavy tail phenomenon of stock returns. Recently, a robust estimator was developed to handle heavy-tailed distributions with some bounded fourth-moment assumption. However, we often observe that log-returns have heavier tail distribution than the finite fourth-moment and that the degrees of heaviness of tails are heterogeneous over the asset and time period. In this paper, to deal with the heterogeneous heavy-tailed distributions, we develop an adaptive robust integrated volatility estimator that employs pre-averaging and truncation schemes based on jump-diffusion processes. We call this an adaptive robust pre-averaging realized volatility (ARP) estimator. We show that the ARP estimator has a sub-Weibull tail concentration with only finite 2$alpha$-th moments for any $alpha>1$. In addition, we establish matching upper and lower bounds to show that the ARP estimation procedure is optimal. To estimate large integrated volatility matrices using the approximate factor model, the ARP estimator is further regularized using the principal orthogonal complement thresholding (POET) method. The numerical study is conducted to check the finite sample performance of the ARP estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا