ﻻ يوجد ملخص باللغة العربية
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$; the edge $uv$ receives the label $f (u) + f (v)$. A graph $G$ is $A$-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. Patrias and Pechenik studied the larger class of finite abelian groups $A$ such that all path graphs are $A$-cordial. They posed a conjecture that all but finitely many paths graphs are $A$-cordial for any Abelian group $A$. In this paper we solve this conjecture. Moreover we show that all cycle graphs are $A$-cordial for any Abelian group $A$ of odd order.
We study a natural discrete Bochner-type inequality on graphs, and explore its merit as a notion of curvature in discrete spaces. An appealing feature of this discrete version seems to be that it is fairly straightforward to compute this notion of cu
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an i
Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only t
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$, th