ﻻ يوجد ملخص باللغة العربية
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$, the edge $uv$ receives the label $f (u) + f (v)$. A graph $G$ is $A$-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. The problem of $A$-cordial labelings of graphs can be naturally extended for hypergraphs. It was shown that not every $2$-uniform hypertree (i.e., tree) admits a $Z_2times Z_2$-cordial labeling cite{Pechnik}. The situation changes if we consider $p$-uniform hypetrees for a bigger $p$. We prove that a $p$-uniform hypertree is $Z_2times Z_2$-cordial for any $p>2$, and so is every path hypergraph in which all edges have size at least~3. The property is not valid universally in the class of hypergraphs of maximum degree~1, for which we provide a necessary and sufficient condition.
We prove that for any integer $kgeq 2$ and $varepsilon>0$, there is an integer $ell_0geq 1$ such that any $k$-uniform hypergraph on $n$ vertices with minimum codegree at least $(1/2+varepsilon)n$ has a fractional decomposition into tight cycles of le
In this paper we show that the maximum number of hyperedges in a $3$-uniform hypergraph on $n$ vertices without a (Berge) cycle of length five is less than $(0.254 + o(1))n^{3/2}$, improving an estimate of Bollobas and GyH{o}ri. We obtain this resu
In this note we show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))frac{n^{3/2}}{sqrt{10}}$. This improves earlier estimates by GyH{o}ri and Lemons and by Furedi and Ozkahya.
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$; th
Given a family of graphs $mathcal{F}$, we define the $mathcal{F}$-saturation game as follows. Two players alternate adding edges to an initially empty graph on $n$ vertices, with the only constraint being that neither player can add an edge that crea