ﻻ يوجد ملخص باللغة العربية
We study a natural discrete Bochner-type inequality on graphs, and explore its merit as a notion of curvature in discrete spaces. An appealing feature of this discrete version seems to be that it is fairly straightforward to compute this notion of curvature parameter for several specific graphs of interest - particularly, abelian groups, slices of the hypercube, and the symmetric group under various sets of generators. We further develop this notion by deriving Buser-type inequalities (a la Ledoux), relating functional and isoperimetric constants associated with a graph. Our derivations provide a tight bound on the Cheeger constant (i.e., the edge-isoperimetric constant) in terms of the spectral gap, for graphs with nonnegative curvature, particularly, the class of abelian Cayley graphs - a result of independent interest.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$; th
Let $overrightarrow{G}$ be a directed graph with no component of orderless than~$3$, and let $Gamma$ be a finite Abelian group such that $|Gamma|geq 4|V(overrightarrow{G})|$ or if $|V(overrightarrow{G})|$ is large enough with respect to an arbitrar
Let $G$ be a finite group. We will say that $M$ and $S$ form a textsl{complete splitting} (textsl{splitting}) of $G$ if every element (nonzero element) $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, and $0$ has a
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality